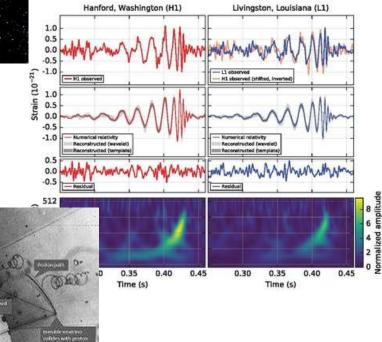
Some new projects in Russian Ground-Based Astronomy V.V.Vlasyuk (SAO of RAS)

III BRICS Workshop on Astronomy Infrastructure and Instrumentation, Pune, 21-22 Sep 2017

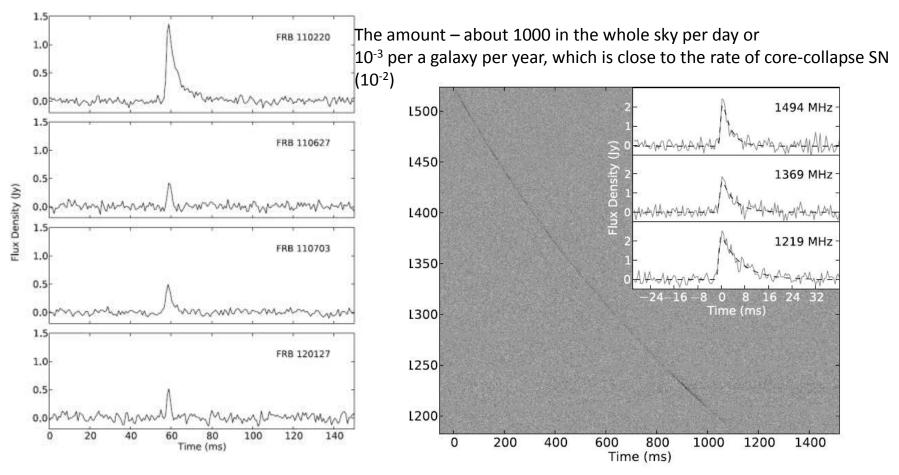
New challenges for the ground-based astronomy in the early 21st century


• Gamma-Ray Bursts:1978-1997-→

Gravitational wave signals :
 Signal GW150914 was detected
 14.09.2015 at 9:51 UTC by two detectors LIGO in Hansford and Livingston (USA) by 7 msec (LIGO & VIRGO collaboration).
 Interpretation: mostly speculative. Signal form agreed well with GTR predictions for Coupling of two BH with 36 & 29 solar masses;
 New one BH should have mass about 62 solar.
 Distance to event source is about 1.3 Giga light years,
 Emitted within coupling process energy equivalent to 3 solar masses. Errror box – about 1000 sq.degrees,
 No identification now.
 GW170104 – close parameters.

• **Neutrino events**: SN1987A is the only reliable event so far, BUT the international projects ICECUBE, ANTARES, etc. are going on...

The 'Neutrino Event' Nov. 13, 1970 — World's first observation of a restring in a hydrogen bubble chamber.



• FRB – Fast Radio Bursts (64-m Parks 13-beam):2001-2013-2016 (the first identification with a radio galaxy at z=0.5)

FRB – Fast Radio Bursts

Discovered in 2007, confirmed in 2013 (Thornton et al, 2013, Nature)

Dispersion measure (DM) – from 500 to 1100 pc/cm³ Distances – 1.7-3.2 Gpc at DM = 100 pc/cm^3

Observations

Reliable identification demands optical identification...

The rate of expected events

- 1. Gamma-Ray Bursts 2-3 per week
- 2. Gravitational events (3 or 4 during the recent 1.5 years)
- 3. Neutrino events (several ones per year)
- 4. Fast Radio Bursts less than 10 so far.

Observations are possible only in the ToO (Target of Opportunity) mode.

How can Russian ground-based astronomy meet the challenge today?

- 1. 6-meter BTA + complexes of spectroscopy, photometry, and fast photopolarimetry
- 2. 1-meter Zeiss-1000 + a CCD photometer (FOW~ 7') and the low-resolution spectrograph
- MiniMegaTORTORA a multi-channel wide-angle complex of subsecond temporal resolution (FOW~ 900 sq°)
- 4. 2-meter Zeiss-2000 of Terskol Branch of INASAN + a CCD photometer (FOW~ 11') + a moderate-resolution spectrograph
- 5. Crymean 2.6-meter Shayn + CCD photometers (the fields of 9' and 20')

Now some Russian astronomical institution prepared some projects,

which should be useful in a future studies,

like as a complex of small telescopes with the fields of 2° or wide-field 1-m aperture telescope.

Anyway, we need large-aperture telescopes with large field and gigapixel CCD mosaic detectors as well.

Project 1. A high-resolution optical spectrograph

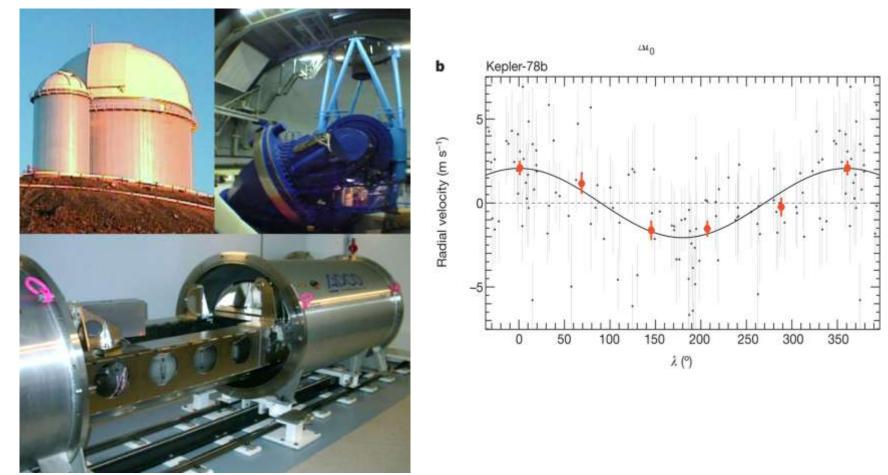
Main task: high-precision RV-spectroscopy (search for exoplanets), classical spectroscopy, spectropolarimetry.

Developed in SAO RAS by G.Valyavin's team for 6-m telescope with Support od Russian science foundation since 2015.

Several new state-of-the-art optical spectrographs have been launched to operate at giant European, Japanese and American telescopes.

The project is aimed to construct a high-resolution, fiber-fed spectrograph equipped with laser-based calibration system and adaptive optics in order to be installed at the 6-m Russian telescope (BTA, North Caucasus).

This instrument will make it possible to carry out a number of unique studies in fundamental science such as search for exoplanets, organic molecules in the Universe, and even serch for extraterrestrial life.


Requirements to accuracies in the RVmeasurements

Hot jupiters — 20-30 m/sec Jupiterian/neptunian mass planets — 1-10 m/sec Planetary systems — a few m/sec Earth type planets — 0.03-0.5 m/sec (!)

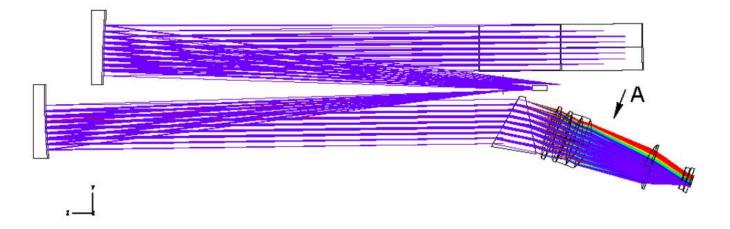
> Is it possible? YES IT IS!

First detection of the earth-type planet

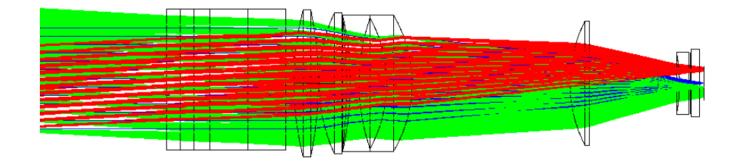
The HARPS spectrograph at ESO

Requirements to the spectrograph

- 1. High resolving power (R ~100000)
- 2. Wide spectral range (from 400 to 750 nm)
- 3. High optical, termal and mechanical stability to provide the RV measurements on the order of about one meters per second
- 4. Spectropolarimetric mode for all 4 Stokes parameters.


Calibration systems

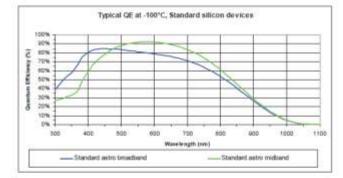
- Thorium-Argonium lamps + halogen lamps: provide about
 m/sec accuracy
- 2. Iodine cells (absorption lamps with iodine vapor) + halogen lamps: provide ~1 m/sec accuracy
- 3. (FUTURE) Femtosecond laser: provides up to 3 sm/sec (!) internal accuracy and 10-20 sm/sec real accuracy.

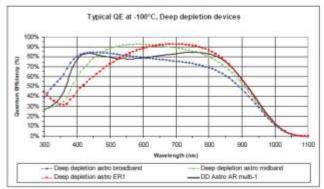

Resolution

- •R = 2*d*tg f / (D*tg S)
- •S=1"; d=200mm; D=6000 mm; tg f=4
- •R = 55000 (ordinary slit)
- •R ~ 75000 (fiber output)
- •S=0.75" → R ~ 100000

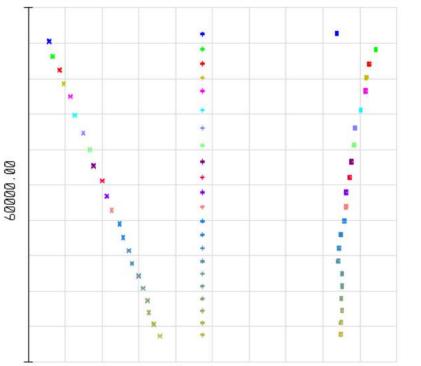
Current optical design

Spectral camera design

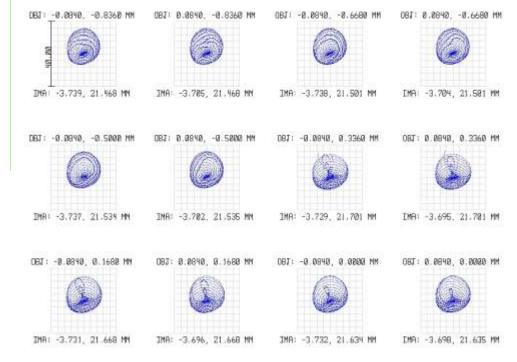



CCD231-84 Back Illuminated Scientific CCD Sensor 4096 x 4096 Pixels, Four Outputs Non-inverted Mode Operation

SUMMARY PERFORMANCE (Typical)


Number of pixels	4096(H) x 4112(V)
Pixel size	15 µm square
Image area	61,4 mm x 61,4 mm
Outpute	4
Package size	63.0 x 69.0 mm
Package format	Silicon carbide with two fexil connectors
Focal plane height, above base	15.0 mm
Height tolerance	±10 µm
Connectors	Teo 37-way micro-D
Flatnese	<20 µm (peak to valley)
Amplifier sensitivity	7 µ\//e*
Readout.noise	5 e° at 1 MHz 2 e° at 50 kHz
Maximum pixel data rate	3 MHz
Charge storage (pixel full welly	350,000 e'
Derk signal	3 e ⁻ /piketihour (at -160 °C)

ССD 4к x 4к (CCD231-84) www.e2v.com



Echelle image in 400-760 nm over CCD frame

Optical quality over focal plane

Project's current status

- 1. Optical design completed and checked
- 2. Pre-slit and calibration units are ready
- 3. Fabrication of camera and CCD are under process
- 4. Expected first light end of 2018.

Project 2. Project of complex of 0.5-m telescopes (SAO of RAS + RusSciFoundation)

Aerial view of future complex (model)

Prototype of first telescope in SAO Lab.

System's parameters

 Up to 6 telescopes with D=0.5 m by "AstroSib" company (Novosibirsk, Russia) with Ritchie-Cretien system
 FOW in primary focus with corrector (F/2.7) will be about 2° × 2°
 FOW in secondary focus (F/8) will be 40' × 40'

2. Fast mounts from 10 Micron (Austria) (model GM 4000 HPS)
Pointing speed - 5°/ceκ
Tracking accuracy - < 1" for 2 hour exposure

3. Low-noise wide-field CCD cameras with Peltier cooling Size: 4K × 4K (4096 × 4096) Readout noise 10 e-Pixel size: 9 мкм

4. Wideband filters SDSS (ugri) and Johnson-Cousins (UBVRcIc) systems, analyzers of circular and linear polarization

Current status

- 1. The 2 telescopes with CCD cameras were bought in 2016 (by RusSciFoundation supports)
- 2. First dome now is under construction and should be completed in 2-3 months
- 3. Second dome should be completed in 2018
- 4. Some agreements with Russian foundations and leading universities about next telescopes are in progress

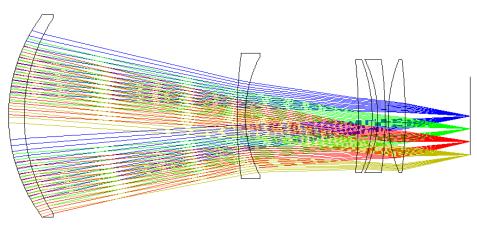
Project by Institute of Astronomy of RAS (Moscow) Model - ASA AZ100WF:

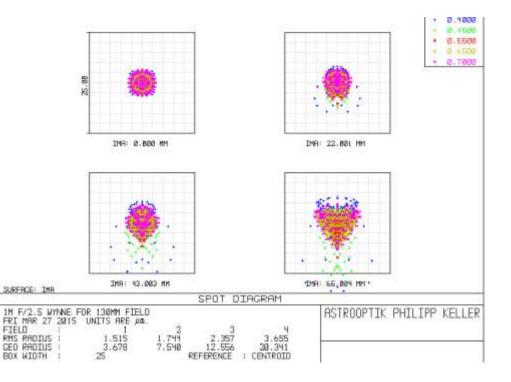
Manufacturer - ASA Astrosysteme GmbH (Австрия).

Main parameters of ASA AZ1000WF

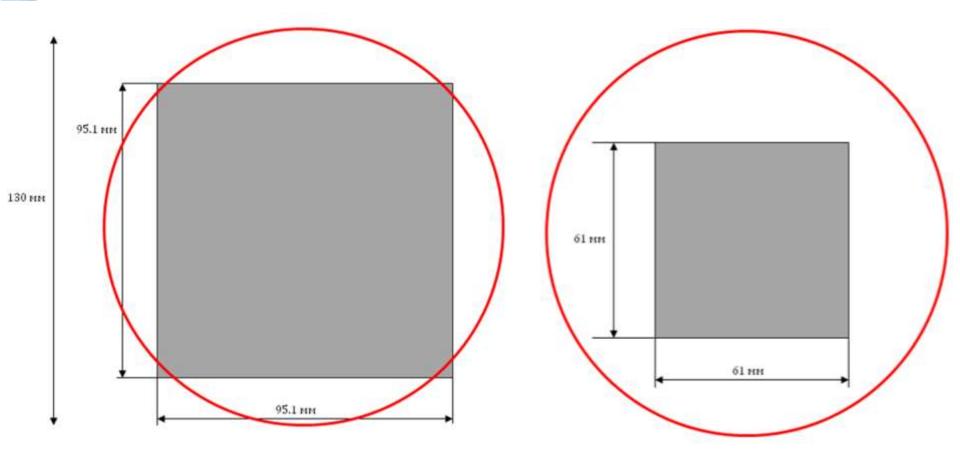
Aperture	1000 мм
Focal Ratio	f/2.5
FOW angular	3 °
FOW linear	130 мм
D80, center-to-edge	8-15 мкм

- Field rotator and focuser are presented
- Alt-azimuthal mountind
- Pointing speed: >6°/s (on both axes)
- Pointing acceleration: 1°/s² (both axes)


Price: 0.5 M Euro Delivery time: 18 months



ASA AZ1000WF June 2017, Austriaя

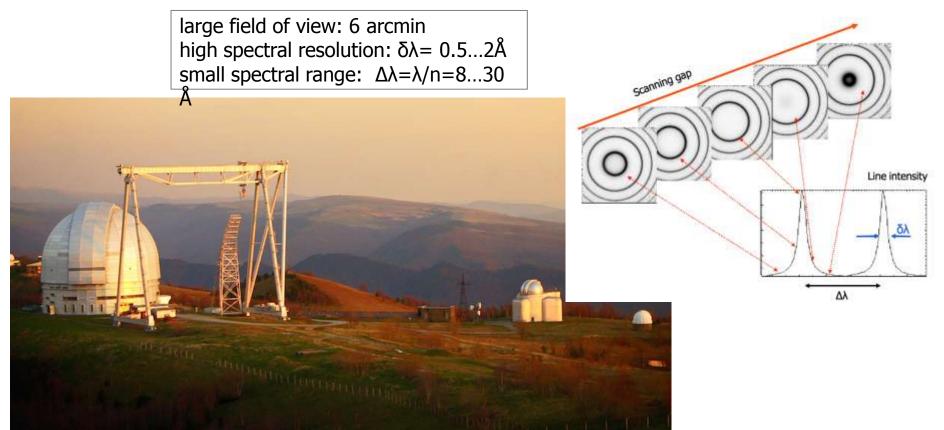

Optical design of lens corrector

Optics quality

Spectral Instruments 1110S (USA) STA 1600 95х95 mm 10к x 10к 9 mkm pixel ANDOR iKon-XL 230 (UK) CCD230-84 61.4 x 61.4 mm 4096 x 4112 15 mkm pixel

CCD for the Telescope:

ANDOR iKon-XL in Institute of Astronomy Lab

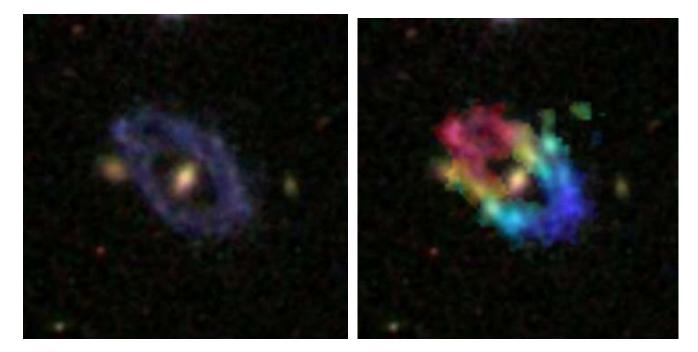


Project 4. 3D spectroscopy with scanning Fabry-Perot interferometer

Scanning FPI at the Russian 6-m telescope: 35 years history, progress in technique: - Boulesteix et al. (1982): "Two dimensional interferometric photon counting observations with the 6m telescope"

- FPI+SCORPIO focal reducer: Afanasiev et al (2005), Moiseev & Egorov (2008)

- modern SCORPIO-2 focal reducer: Afanasiev & Moiseev (2011), Moiseev (2015)


SAO (Russia) – SAAO (South Africa) collaboration: ring galaxies in 3D

Observations: 6-m telescope BTA (Russia)

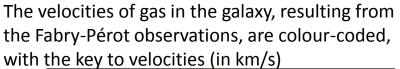
New distant polar ring galaxy SDSS J075... Brosch et (2010) A gigant (D=50 kpc) stellar-gaseous disk inclined on Δi= 73±12° relative central SO-like host. M/L=20

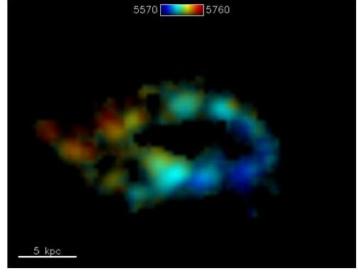
SDSS-image

FPI mapped velocities of the ionized gas:

SAO (Russia) – SAAO (South Africa) collaboration: ring galaxies in 3D

Observations: 11-m The Southern African Large Telescope

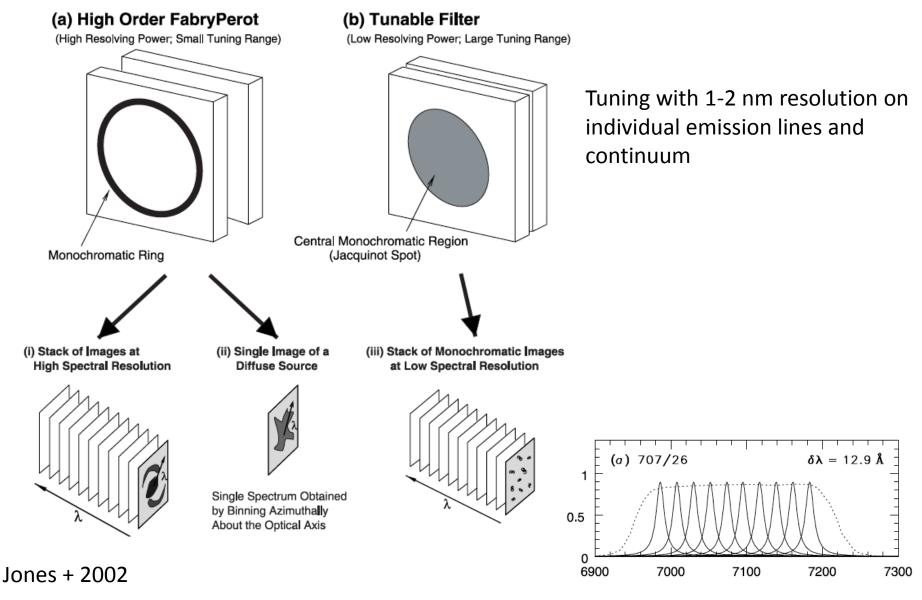

ESO474-G040: Not "the Eye of Sauron", but still a fascinating galaxy



https://www.salt.ac.za/news/not-the-eye-of-sauron/

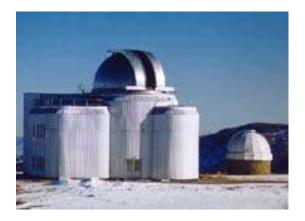
Monthly Notices of the royal astronomical society

MNRAS 451, 4114-4125 (2015)


The empty ring galaxy ESO 474-G040

Noah Brosch,1* Petri Väisänen,2,3 Alexei Y. Kniazev2,3,4 and Alexei Moiseev4,5

¹The Wise Observatory and the Raymond and Beverly Sackler School of Physics and Astronomy, the Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

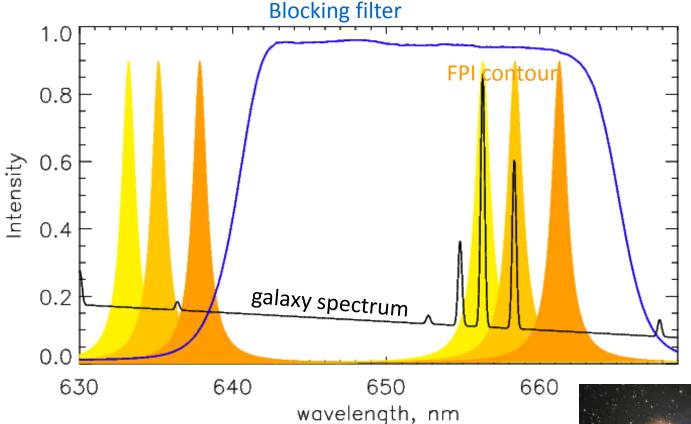

²South African Astronomical Observatory, PO Box 9, Observatory 7935, Cape Town, South Africa

Tunable Filter based on Fabry-Perot interferometer

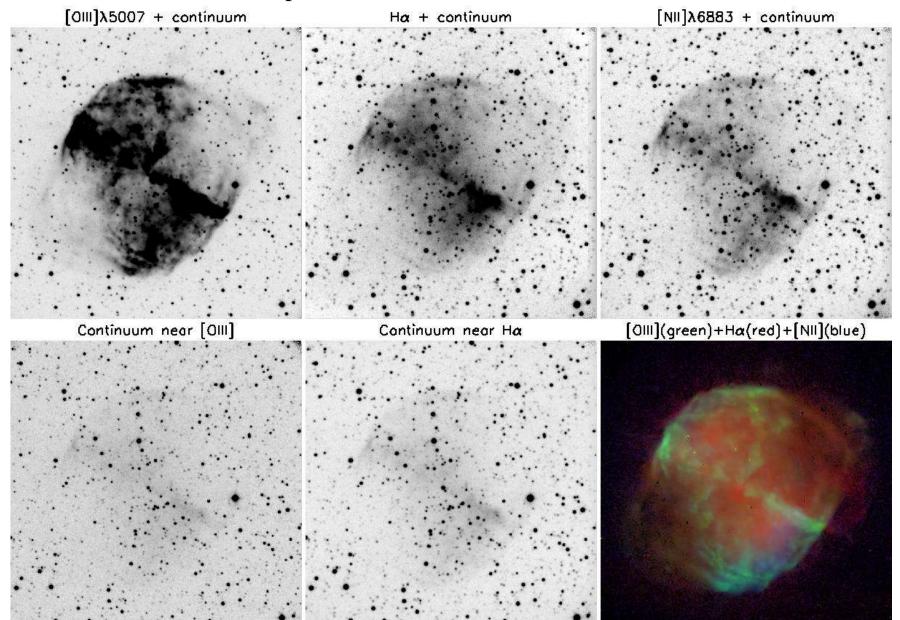
Tunable Filter: a solution for 1-2 m class telescopes


Focal reducer (1:2) with FPI tunable filter: FOV: 9' Resolution: 1 nm Detector: iKon M-934, Andor

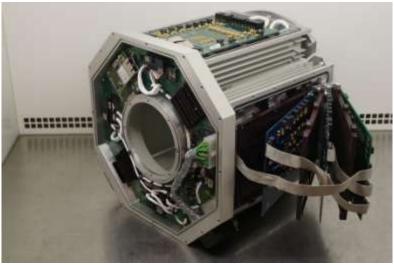
Cassegrain focus

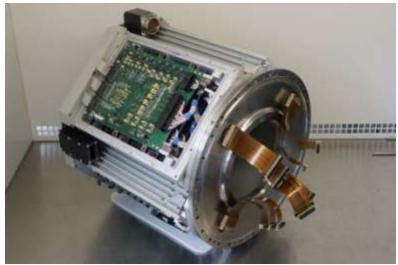

2.5-m SAI Moscow State University telescope (October 2017?)

1-m SAO RAS telescope: (the first light was taken in Sep 5th,

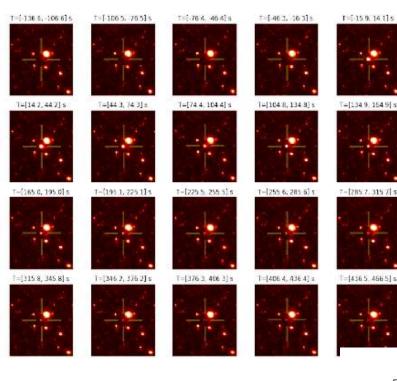

Tunable Filter: the main idea

- planetary nebulae, HII regions, Supernova remnants
- extended ionized gas disks in galaxies
- emision filaments and jets around active galactic nuclei


MaNGaL at 1-m telescope: tunable filter mode. NGC 6853

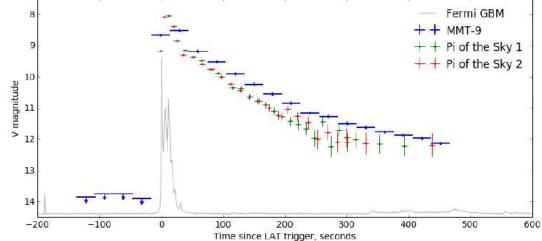


Project 5. Current projects of SAO RAS – large format cameras and mosaics



Project 6. The multi-channel wide-angle telescope of high temporal resolution Mini-MegaTORTORA – since 2014

Performance capabilities : 9 channels with the field of view of 100 sq.deg. each. Threshold of magnitude – about 11.5 mag during 0.1s or 15 mag during 60s. There is a project of extending the system.


The MMT study of GRB160625B

Operation by a precursor at -180 sec

The study in the field of 30x30 grad T_{exp} =30sec

The lag of optics in comparison with gamma-rays is about 3 sec

Thank you for your attention!