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Figure 4: A diagram of 21-cm imaging of ionized bubbles during the epoch of reionization, illustrating
to an analogy of slicing Swiss cheese. The two dimensions on each slice is the sky coordinates, and the
dimension of slicing is the frequency/wavelength/redshift.

Figure 5 is the cartoon version of the di↵erent phases of 21-cm. Figure 9 shows a more

concrete and quantitative overview of the evolution of global (sky-averaged) 21-cm brightness

temperature relative to the CMB. One can see that the spin-flip background measures the UV

and X-ray radiation field over a broad swath of cosmic history, complementing the discrete probes

of individual galaxies that are studied by Lyman-↵ forest.

1.2.1 Preliminary: Einstein coe�cients and emission process

In 1916, Albert Einstein proposed that there are three processes occurring in the formation of an

atomic spectral line. The three processes are referred to as spontaneous emission, stimulated

emission, and absorption (Fig. 8). With each is associated an Einstein coe�cient which is a

measure of the probability of that particular process occurring. Einstein considered the case of

isotropic radiation of frequency ⌫, and spectral energy density ⇢(⌫).

1. Spontaneous emission is the process by which an electron “spontaneously” (i.e. without

any outside influence) decays from a higher energy level to a lower one (left upper panel

of Fig. 8). The process is described by the Einstein coe�cient A10 (s�1) which gives the

probability per unit time that an electron in state 1 with energy E1 will decay spontaneously

to state 0 with energy E0, emitting a photon with an energy E1 � E0 = h⌫. If ni is the

number density of atoms in state i, then the change in the number density of atoms in state

1 per unit time due to spontaneous emission will be:

✓
dn1

dt

◆

spon

= �A10n1, (1.13)
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Figure 5: Cartoon of di↵erent phases of the 21-cm signal. The signal transitions from the an early phase of
collisional coupling to a later phase of Lyman-↵ coupling through a short period where there is little signal.
Fluctuations after this phase are dominated by spatial variation in the Lyman-↵ , X-ray and ionizing UV
backgrounds. After reionization is completed, there is residual signal from neutral hydrogen in the galaxies.
Figure taken from [5].

Figure 6: Overview of the global 21-cm signal. Top panel: Time evolution of fluctuations in the 21-cm
brightness from just before the first stars form to the end of reionization. The colour indicates the strength
of the 21-cm brightness as it transits from absorption (blue) to emission (red) and finally disappear (black)
due to ionization. Bottom panel: Expected evolution of the sky-averaged 21-cm brightness from the dark
ages at z ' 150 to the end of reionization z ' 6. This process is a↵ected by the interplay of gas heating,
the coupling between gas and 21-cm temperatures and ionization of gas. There is a lot of astrophysical
uncertainties associated with this process. Figure taken from [6].
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The spin temperature is an interpolation between CMB 
temperature and gas temperature 
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adiabatic 
cooling 



Cosmological	21cm	signal	

Fraction of neutral hydrogen, gas density, los velocity gradient, spin temperature 

Astrophysics, Cosmology 

Very rich physics, the trick is to effectively modeling the 
whole process (21cmFast)  
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•  Dark	energy	equation	of	the	state	
•  Epoch	of	reionization	
•  Cosmological	parameters	
•  Cross-correlation	with	other	optical	
surveys	

•  Structure	formation	
•  Missing	baryon	problems	
•  HI	bias	



•  21-cm	cosmology	
•  Challenges	
•  Machine	learning	aspects	
•  Cross-correlation	with	cosmic	fields	
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99	per	cent	of	the	Cosmology	is	to	measure:	(information	ascending)		
(1) Abundance	of	the	light	elements	
(2) Cosmic	Expansion	
(3) Growth	of	perturbations	

Cosmic	expansion	
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where we have neglected the contributions at the observer since they only give rise t monopole or dipole terms.
We then integrate over a redshift (frequency) normalized window function W (z) to give

∆W
Tb,l(k) =

∫ ∞

0
dzW (z)∆Tb,l(k, z). (27)

The angular cross-spectra between redshift windows is then calculated as

CWW ′

l = 4π

∫

d ln kPR(k)∆W
Tb,l(k)∆

W ′

Tb,l(k), (28)

where PR(k) is the dimensionless power spectrum of the primordial curvature perturbation R, and the transfer
functions ∆W

Tb,l
(k) ≡ ∆W

Tb,l
(k)/R(k).

We calculate the cross-spectra using a modified version of the Boltzmann code CAMB sources6. At the low
redshifts we consider, some care must be taken when integrating over the narrow window function, and we found it
necessary to run the code at accuracy boost = 2 to ensure the window was well sampled.
The new terms that have been uncovered by this self-consistent linear analysis are expected to be negligible on all

but the largest scales and highest redshifts (see [26] for a thorough investigation in the context of galaxy surveys).
The only new aspect of our application is the narrow window function in redshift-space which enhances the relative
importance of the redshift-space distortion term. Considering fluctuations at a given small angular scale 1/l, if the
redshift window function is broad compared to the typical linear scale χ(z)/l of the contributing perturbations (where
χ(z) is comoving distance back to redshift z), we are in the ‘Limber’ regime and the redshift distortions ∝ −n̂ ·(n̂ ·∇v)
will tend to cancel out on integrating through the window. Normalising the window function to unity to keep the
integrated background T̄b almost constant, the power from redshift-space distortions falls as (∆χ)−2, where ∆χ is
the width of the window function, on small scales. In the Limber limit, the power from the integrated density term
falls more slowly – as (∆χ)−1 – since the fluctuation power accumulates as the number of incoherent patches within
the window. However, since the redshift window is very narrow for 21 cm mapping, only very small scales are in the
Limber regime, thus significantly enhancing the relative power in redshift-space distortions, as seen in Fig. 6 of [26].
In Fig. 1 we plot the auto-spectra of each of the terms in Eq. (18) individually, including those contained in δη, for

a bandwidth of 2MHz at z = 1. Clearly, the density and redshift-space distortion terms are dominant on all angular
scales at this redshift. Note that super-Hubble effects are generally suppressed in the 21 cm power spectrum since the
signal on large angular scales is dominated not by modes at the corresponding linear scale, but by smaller sub-Hubble
scale modes [29]. This is because the dimensionless power spectrum of δn grows rapidly as k4 on scales smaller than
Hubble length (but larger than the horizon size at matter-radiation equality). The 21 cm signal is therefore like white
noise, Cl = const., on angular scales large compared to the angle subtended by the peak in the matter power spectrum.
The fractional error in the power spectrum if only the density7 and redshift-space distortion terms are retained is

shown in Fig. 2 at z = 1 for various widths of redshift window. We see that the relative importance of relativistic
effects increases as the bin size increases, consistent with the results of [26]. This arises from the dominant white-noise
contribution of small scale modes at a given l being suppressed by cancellations through the width of the window,
but the contribution of large-scale modes, where the relativistic terms are relevant, not being suppressed. At the
low redshifts considered in this work, the relativistic terms represent only sub-percent corrections to the large-scale
angular power, where cosmic variance is large. Moreover, their effect is small compared to astrophysical modelling
uncertainties, for example in the bias. However, we include the relativistic terms in our forecasts for consistency.

III. MODIFIED GRAVITY

Several attempts have been made to explain the phenomenon of accelerating expansion through a modification to
standard GR [3]. These modifications must predict an expansion history close to that of ΛCDM, but generically
predict different linear perturbation dynamics [4, 36, 37]. It is therefore necessary to study the clustering of matter in
order to distinguish between competing theories8. Note however that if dark energy is allowed to cluster, sufficiently
complex models may be able to reproduce the perturbed dynamics of some modified-gravity models, making them
effectively indistinguishable [5, 6].

6 http://camb.info/sources.
7 In the remainder of this work, ‘density’ refers to the Newtonian-gauge density of Eq. (21).
8 It should be borne in mind that none of these theories explains why the vacuum energy from particle physics is cancelled to such high
precision on cosmological scales.
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For the third term in Eq. (2.62), the bracket is just a redshift-dependent term, and the spatial

dependent is encoded in �⌘, so from Eq. (2.47) we want to calculate

F(�⌘) =
1

H(⌘̄z)
F


 A �  +

Z ⌘̄z

⌘A

(�̇+  ̇)d⌘0 + n̂ · (v � voA)

�
. (2.83)

Here we throw out the two constant terms, since they only a↵ect the ` = 1 moment. The  term

is easy, since it is just the  ̃. For the velocity term, again we have

F(n̂ · v) = n̂ · v(k) = �i(k̂ · n̂)ṽ(k)

) �Tb,`(z,k) ⇠ �ṽ(k)j0`(k�). (2.84)

Finally, for the ISW term, we need to use d� ' �d⌘ (neglecting higher order perturbation),

and also we need to bear in mind that inside the ISW term in Eq. (2.47), the �(r, ⌘) and  (r, ⌘)

are functions of spatial hyper-surface at each conformal time ⌘. Therefore we have (For the first

line r0 means the 3D hyper-surface at conformal time ⌘0)
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Note that j` function is just to tell how di↵erent Fourier modes project onto di↵erent angular

scales.

Therefore, the third term in Eq. (2.62) all together becomes
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Therefore, the whole �Tb,`(k, z) is
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The square bracket “[⇥ ⇥ ⇥]” has clear physical meaning. The first term, second term and

third term in the square bracket is just the usual SW, Doppler shift and ISW contributions,
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FIG. 1: (Color Online). Fractional brightness temperature perturbation power spectrum at z = 1 with a 2MHz bandwidth.
The auto-spectra of the full signal (black, dashed) and of each individual term in Eq. (18) are shown, generically grouped (solid
lines, top to bottom respectively) as Newtonian-gauge density (red), redshift-space distortions (green), velocity terms (blue),
all potential terms evaluated at the source position (cyan) and the ISW term (magenta).

Amongst the most studied examples of modified gravity are scalar-tensor theories and the higher-derivative theory
f(R), which can be mapped on to a scalar-tensor theory via a conformal transformation of the metric and a field
redefinition [38]. The action in a scalar-tensor theory takes the form

S =

∫

d4x
√
−g

[

−M2
Pl

2
R+

1

2
(∇φ)2 − V (φ)

]

+ Sm(g̃µν ,ψ
(i)
m ), (29)

where MPl = 1/
√
8πG is the reduced Planck mass, V is the potential for the scalar field φ, and ψ(i)

m are the matter
fields which couple to the conformally rescaled metric g̃µν where

g̃µν = e−α(φ)/MPlgµν , (30)

where α(φ) is an arbitrary coupling function. The metric gµν is the Einstein-frame metric, where the action in
Eq. (29) looks like the standard Einstein-Hilbert action but with matter non-minimally coupled to the metric. This
frame has the advantage of being mathematically ‘close’ to GR, but has the disadvantage that matter does not follow
the geodesics of gµν and the energy-momentum tensor is not covariantly conserved with respect to this metric. The
frame picked out by g̃µν is the Jordan frame, where matter moves along geodesics but the gravitational action is not
of Einstein-Hilbert form. Both frames are equivalent in the sense that observables calculated in either will be the
same. From now on we will assume that all matter fields couple to the metric with a universal coupling α(φ).
We describe linear perturbations in the conformal Newtonian gauge. For scalar modes, the field equations reduce

to four independent equations involving the gravitational potentials Φ and Ψ, the fractional density perturbation δ,
the velocity potential v (or equivalently the momentum density q), and the anisotropic stress Π. The anisotropic
stress is negligible in the late Universe, but we include it in numerical work for consistency. In the Jordan frame,
energy-momentum is conserved and so the continuity and Euler equations retain their forms in GR. In Fourier space,
for pressure-free matter, they become

δ̇ + kv − 3Φ̇ = 0, v̇ +Hv − kΨ = 0, (31)



•  21-cm	cosmology	
•  Challenges	
•  (1)	featureless	power	spectrum	
•  (2)	very	high	foreground	
•  (3)	Various	systematics	
•  Machine	learning	aspects	
•  Cross-correlation	with	cosmic	fields	
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FIG. 1: (Color Online). Fractional brightness temperature perturbation power spectrum at z = 1 with a 2MHz bandwidth.
The auto-spectra of the full signal (black, dashed) and of each individual term in Eq. (18) are shown, generically grouped (solid
lines, top to bottom respectively) as Newtonian-gauge density (red), redshift-space distortions (green), velocity terms (blue),
all potential terms evaluated at the source position (cyan) and the ISW term (magenta).

Amongst the most studied examples of modified gravity are scalar-tensor theories and the higher-derivative theory
f(R), which can be mapped on to a scalar-tensor theory via a conformal transformation of the metric and a field
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(∇φ)2 − V (φ)
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(i)
m ), (29)

where MPl = 1/
√
8πG is the reduced Planck mass, V is the potential for the scalar field φ, and ψ(i)

m are the matter
fields which couple to the conformally rescaled metric g̃µν where
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where α(φ) is an arbitrary coupling function. The metric gµν is the Einstein-frame metric, where the action in
Eq. (29) looks like the standard Einstein-Hilbert action but with matter non-minimally coupled to the metric. This
frame has the advantage of being mathematically ‘close’ to GR, but has the disadvantage that matter does not follow
the geodesics of gµν and the energy-momentum tensor is not covariantly conserved with respect to this metric. The
frame picked out by g̃µν is the Jordan frame, where matter moves along geodesics but the gravitational action is not
of Einstein-Hilbert form. Both frames are equivalent in the sense that observables calculated in either will be the
same. From now on we will assume that all matter fields couple to the metric with a universal coupling α(φ).
We describe linear perturbations in the conformal Newtonian gauge. For scalar modes, the field equations reduce

to four independent equations involving the gravitational potentials Φ and Ψ, the fractional density perturbation δ,
the velocity potential v (or equivalently the momentum density q), and the anisotropic stress Π. The anisotropic
stress is negligible in the late Universe, but we include it in numerical work for consistency. In the Jordan frame,
energy-momentum is conserved and so the continuity and Euler equations retain their forms in GR. In Fourier space,
for pressure-free matter, they become

δ̇ + kv − 3Φ̇ = 0, v̇ +Hv − kΨ = 0, (31)

Figure 5: Cartoon of di↵erent phases of the 21-cm signal. The signal transitions from the an early phase of
collisional coupling to a later phase of Lyman-↵ coupling through a short period where there is little signal.
Fluctuations after this phase are dominated by spatial variation in the Lyman-↵ , X-ray and ionizing UV
backgrounds. After reionization is completed, there is residual signal from neutral hydrogen in the galaxies.
Figure taken from [5].

Figure 6: Overview of the global 21-cm signal. Top panel: Time evolution of fluctuations in the 21-cm
brightness from just before the first stars form to the end of reionization. The colour indicates the strength
of the 21-cm brightness as it transits from absorption (blue) to emission (red) and finally disappear (black)
due to ionization. Bottom panel: Expected evolution of the sky-averaged 21-cm brightness from the dark
ages at z ' 150 to the end of reionization z ' 6. This process is a↵ected by the interplay of gas heating,
the coupling between gas and 21-cm temperatures and ionization of gas. There is a lot of astrophysical
uncertainties associated with this process. Figure taken from [6].
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		Simulated 21 cm signal, tracer of ρHI(θ,;z):	ΔT ~ 1 mK	
	left - over full sky at 400 MHz,		right - over 50 MHz at 1 declination	
Main goal is to measure BAO structure in PHI(k), 
less concerned about amplitude of PHI(k).	

Hydrogen intensity signal	



Modeled  Galaxy signal, ΔT	~	700	K!	
left - over full sky at 400 MHz,	
right - over 50 MHz at 1 declination - spectrally smooth	

The “other” signal: synchrotron (primarily)	



Noise:	
1. uncorrelated	noise	white	noise		
2. correlated	noise	in	time	and	frequency	1/f	
noise	

3. Atmospheric	noise		

Systematic	effect:	
1.	sidelobes:	near,	intermediate,	far	(mode	mixing)	
2.	band-pass	calibration	
3.	Ground	spilled	over	
4.	Cross	polarization	
5.	beam	ellipticity	....		
	

Without	those	details,	radio	cosmology	is	an	unrealistic	
dream.	



Input	experimental		
parameters	and	data	file		

Sky	Model	(s):	
•	Cosmological	21cm	signal	
•	CO	emission	
•	CMB	
•	foreground	signal	including		
(a)	free-free	emission	
(b)	spinning	dust	
(c)	synchrotron	
(d)	point	sources,	and	clusters	(e)	line	emission		
(f)	de-polarization	(Q,U	into	I)		
•	atmospheric	signal	
•	ground	spill-over	(emission	from	the	ground)	
•	straight	light	(moon/sub/galaxy)		

Pointing	Matrix(A):	
Pointing	and	scanning	
strategy	(each	
frequency	channel,	
with	bandpass)		

Noise	Sim	(n):	
•	white	noise	
•	1/f	noise	
•	atmosphere	
noise		

																								Map-Making:	
																																																						,		
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Figure 1. Mollweide projection of the foreground with a background
of unresolved point sources (S< 100 mJy) and synchrotron emission at
1000 MHz in celestial (RA/Dec) coordinates with RA=0� at the centre and
increasing to the left. The white solid lines define the region expected to be
observed by the BINGO experiment.

Tb = T̄b(1+dHI), (6)

where dHI is the HI density contrast and T̄b the mean HI brightness
temperature given by

T̄b(z) = 0.3K
✓

WHI

10�3

◆✓
Wm +(1+ z)�3WL

0.29

◆�1/2 ✓
1+ z
2.5

◆1/2
. (7)

We assume that the neutral HI fraction is WHI = 5⇥10�4 (Switzer
et al. 2013) and the HI bias is independent of scale and redshift with
bHI = 1.

The HI brightness temperature power spectrum can be mod-
eled as

PTb(~k,z) = T̄ 2
b (z)

⇥
bHI + f µ2⇤2 D2(z)Pm(k,z), (8)

where µ ⇠ kk/k with the flat-sky approximation, Pm(k,z) the mat-
ter power spectrum, D(z) the linear growth factor normalised by
D(0) = 1, and f the linear growth rate f = d logD/d loga, where
a is the cosmological scale factor. The HI angular power spectrum
is obtained from Gaussian random fields with the flat sky angular
power spectrum (Datta, Choudhury & Bharadwaj 2007)

Cflat
` (Dn) =

T̄ 2
b

pr2
v

Z •

0
dkkcos(kkrvDn)PTb(k), (9)

where rv is the comoving distance, k has components kk and `/rv
along the line-of-sight and in the plane of the sky respectively. Us-
ing these inputs, we generate the maps of the HI signal which have
r.m.s. fluctuations around 0.1 mK.

2.3 Simulation of a single-dish experiment

We consider a single-dish experiment based on the BINGO con-
cept. BINGO will be a dual mirror Compact Antenna Test Range
(CATR) telescope with a 40 m primary mirror and an offset fo-
cus. Apart from the telescope optics the design of the instrument
is similar to that of Battye et al. (2013). The proposal BINGO ex-
periment will have a receiver array containing between 50 and 60
feed horns. In our simulation, we model the receiver plane with
56 feed horns with 90 m focal length. We consider the frequency
range from 960 MHz (z = 0.48) to 1260 MHz (z = 0.13). For com-
putational speed, we choose to divide the 300 MHz band into 20
channels each of 15 MHz bandwidth, though the actual instrument

Table 2. Instrumental parameters for BINGO simulation.

Survey parameters
Redshift range [zmin,zmax] [0.13, 0.48]
Frequency range [nmin,nmax] (MHz) [960, 1260]
Channel width Dn (MHz) 15
FWHM (arcmin) at 1 GHz 40
Number of feed horns nf 56
Sky coverage Wsur (deg2) 3000
Observation time tobs (yr) 1
System temperature Tsys (K) 50
Sampling rate (Hz) 0.1

will have much narrower frequency channels to facilitate RFI ex-
cision. The sampling rate is 0.1 Hz. The instrumental parameters
used for our simulation are listed in Table 2.

We assume that the horns are arranged in a rectangular config-
uration with spaced 3.3 m apart and the beams are given by a circu-
lar Gaussian. The beams are diffraction-limited, and therefore, the
full width at half maximum qFWHM of the beam can be scaled to
any frequency n by

qFWHM(n) = qFWHM(n0)
n0
n

, (10)

with n0 = 1000 MHz and qFWHM(n0) = 40 arcmin.
For the following simulations, we will assume that the tele-

scope will map a 15� declination strip at the declination of �5�

as the sky drifts past the telescope. The declination of �5� has
been chosen to minimise the foreground emission, which is low-
est between 10 and �10� declination. We assume one full year of
on-source integration. In practice, this will likely represent about 2
years of real observation time since we could consider night time
only and we will remove some data due to technical issues like such
as radio frequency interference, weather downtime etc.

To obtain the simulated maps of the BINGO instrument, we
use a maximum likelihood map-making algorithm (Stompor et al.
2002; Hamilton 2003). We model the timelines d as d = As + n,
where s is the pixelized sky signal, which is mapped into the time-
lines and corrupted by noise n. The pointing information is repre-
sented by the pointing matrix A of size Nsamples ⇥ Npixels, which
connects the time index to pixel index. The map-making step is
given by

ŝ = (AT N�1A)�1AT N�1d, (11)

where N is the noise covariance matrix and ŝ is the best estimate
of s. One impact of the 1/ f noise is to induce slow drifts of the
gains of the receivers. If we do not take steps to mitigate it, the 1/ f
noise will introduce stripes in the maps along the direction of the
drift scan. The inversion of (AT N�1A) is performed by using the
preconditioned conjugate gradient method. The preconditioner is
a pixel domain diagonal matrix weighting the pixels by the num-
ber of times they have been observed. This method is explained in
Cantalupo et al. (2010).

We fix the HEALPix resolution of the map equal to nside=128,
which corresponds to the pixel size of the maps to 27 arcmin. The
focal plane configuration will lead to some gaps in the observed
sky band. To correct this, we rotate the beams of the horns on the
sky with an angle ⇠ 5�. In Fig. 2, we show the drift scan strips of
the sky emission. In the following, we consider a single frequency
channel centered at 997.5 MHz to display the results. The top panel
shows the HI signal and the bottom panel the Galactic synchrotron
emission plus a background of unresolved point sources. The am-
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Figure 1. Mollweide projection of the foreground with a background
of unresolved point sources (S< 100 mJy) and synchrotron emission at
1000 MHz in celestial (RA/Dec) coordinates with RA=0� at the centre and
increasing to the left. The white solid lines define the region expected to be
observed by the BINGO experiment.
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We assume that the neutral HI fraction is WHI = 5⇥10�4 (Switzer
et al. 2013) and the HI bias is independent of scale and redshift with
bHI = 1.

The HI brightness temperature power spectrum can be mod-
eled as

PTb(~k,z) = T̄ 2
b (z)

⇥
bHI + f µ2⇤2 D2(z)Pm(k,z), (8)

where µ ⇠ kk/k with the flat-sky approximation, Pm(k,z) the mat-
ter power spectrum, D(z) the linear growth factor normalised by
D(0) = 1, and f the linear growth rate f = d logD/d loga, where
a is the cosmological scale factor. The HI angular power spectrum
is obtained from Gaussian random fields with the flat sky angular
power spectrum (Datta, Choudhury & Bharadwaj 2007)
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where rv is the comoving distance, k has components kk and `/rv
along the line-of-sight and in the plane of the sky respectively. Us-
ing these inputs, we generate the maps of the HI signal which have
r.m.s. fluctuations around 0.1 mK.

2.3 Simulation of a single-dish experiment

We consider a single-dish experiment based on the BINGO con-
cept. BINGO will be a dual mirror Compact Antenna Test Range
(CATR) telescope with a 40 m primary mirror and an offset fo-
cus. Apart from the telescope optics the design of the instrument
is similar to that of Battye et al. (2013). The proposal BINGO ex-
periment will have a receiver array containing between 50 and 60
feed horns. In our simulation, we model the receiver plane with
56 feed horns with 90 m focal length. We consider the frequency
range from 960 MHz (z = 0.48) to 1260 MHz (z = 0.13). For com-
putational speed, we choose to divide the 300 MHz band into 20
channels each of 15 MHz bandwidth, though the actual instrument

Table 2. Instrumental parameters for BINGO simulation.

Survey parameters
Redshift range [zmin,zmax] [0.13, 0.48]
Frequency range [nmin,nmax] (MHz) [960, 1260]
Channel width Dn (MHz) 15
FWHM (arcmin) at 1 GHz 40
Number of feed horns nf 56
Sky coverage Wsur (deg2) 3000
Observation time tobs (yr) 1
System temperature Tsys (K) 50
Sampling rate (Hz) 0.1

will have much narrower frequency channels to facilitate RFI ex-
cision. The sampling rate is 0.1 Hz. The instrumental parameters
used for our simulation are listed in Table 2.

We assume that the horns are arranged in a rectangular config-
uration with spaced 3.3 m apart and the beams are given by a circu-
lar Gaussian. The beams are diffraction-limited, and therefore, the
full width at half maximum qFWHM of the beam can be scaled to
any frequency n by

qFWHM(n) = qFWHM(n0)
n0
n

, (10)

with n0 = 1000 MHz and qFWHM(n0) = 40 arcmin.
For the following simulations, we will assume that the tele-

scope will map a 15� declination strip at the declination of �5�

as the sky drifts past the telescope. The declination of �5� has
been chosen to minimise the foreground emission, which is low-
est between 10 and �10� declination. We assume one full year of
on-source integration. In practice, this will likely represent about 2
years of real observation time since we could consider night time
only and we will remove some data due to technical issues like such
as radio frequency interference, weather downtime etc.

To obtain the simulated maps of the BINGO instrument, we
use a maximum likelihood map-making algorithm (Stompor et al.
2002; Hamilton 2003). We model the timelines d as d = As + n,
where s is the pixelized sky signal, which is mapped into the time-
lines and corrupted by noise n. The pointing information is repre-
sented by the pointing matrix A of size Nsamples ⇥ Npixels, which
connects the time index to pixel index. The map-making step is
given by

ŝ = (AT N�1A)�1AT N�1d, (11)

where N is the noise covariance matrix and ŝ is the best estimate
of s. One impact of the 1/ f noise is to induce slow drifts of the
gains of the receivers. If we do not take steps to mitigate it, the 1/ f
noise will introduce stripes in the maps along the direction of the
drift scan. The inversion of (AT N�1A) is performed by using the
preconditioned conjugate gradient method. The preconditioner is
a pixel domain diagonal matrix weighting the pixels by the num-
ber of times they have been observed. This method is explained in
Cantalupo et al. (2010).

We fix the HEALPix resolution of the map equal to nside=128,
which corresponds to the pixel size of the maps to 27 arcmin. The
focal plane configuration will lead to some gaps in the observed
sky band. To correct this, we rotate the beams of the horns on the
sky with an angle ⇠ 5�. In Fig. 2, we show the drift scan strips of
the sky emission. In the following, we consider a single frequency
channel centered at 997.5 MHz to display the results. The top panel
shows the HI signal and the bottom panel the Galactic synchrotron
emission plus a background of unresolved point sources. The am-
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Figure 3. Maps of the drift scan of the instrumental noise. The top panel represents the thermal noise and the bottom panel the 1/ f noise. Note the different
intensity scales. Colour bars represent the temperature in mK.

3 FOREGROUND AND INSTRUMENTAL NOISE
SUBTRACTION

For an observing frequency around 1 GHz, the synchrotron emis-
sion and the extragalactic point sources emission are the most rele-
vant foregrounds. The removal of the foregrounds and instrumental
1/ f will rely on the smoothness of their frequency spectra. In this
section, we want to quantify how well the foregrounds can be sub-
tracted in the presence of thermal and 1/ f noise. Our philosophy
is to focus on two simple cleaning procedures, parametric fitting
and a blind method with principal component analysis (PCA). We
describe these methods in Section 3.1 and present their results in
Section 3.3. We also demonstrate the possibility of using a blind
method to remove the instrumental 1/ f noise in Section 3.2. In the
following, we assume no systematics array and a perfect calibration
of the data.

3.1 Methods

3.1.1 Parametric fitting

Parametric fitting is a common method to parameterise foregrounds
(e.g. Brandt et al. 1994; Ansari et al. 2012). The approach of the
method is to fit directly an explicit parametric model of the fore-
grounds and noise to each pixel of the maps along the frequency
direction. The common foreground model is a modified power-law,
as the main foreground emission, the Galactic synchrotron, can be
approximated by a parametric distribution with a curvature to first
order (Kogut 2012).

The i-th pixel of the simulated map of the sky at the frequency
n j can be written as the sum of the intensity of the HI signal T i

21cm,
the foreground emissions T i

fg and the noise of the instrument T i
n

T̂ i
j = T̂ i

21cm, j + T̂ i
fg, j + T̂ i

n, j. (15)

The hat symbol denotes a modelled quantity. We make the assump-
tion that the foreground T̂fg and 1/ f noise T̂ i

n can be modelled by

T̂ i
fg, j + T̂ i

n, j+ = Ai
✓

n
n0

◆b
, (16)

where b is the spectral index and A is the amplitude in mK. The
assumption on the spectral slope of the 1/ f noise can be justified
by the fact that the 1/ f noise fluctuations are expected to have a
spectral form similar to the system temperature, which can be ap-
proximated by a power-law over the BINGO frequency range. We
fit Eq. 16 for each pixel of the map in the frequency direction min-
imised using a least-squares method.

3.1.2 Principal Component Analysis (PCA)

PCA (Murtagh & Heck 1987) has the advantage of being a non-
parametric method and so requires no specific prior information on
the spectra of the foreground and the noise. This method consists

of making the independent maps of each frequency channel into or-
thogonal modes according to the covariance between frequencies.
We consider the data to be a matrix S, with Nf ⇥Np elements. Nf
denotes the number of frequency channels and Np the number of
pixels in the map. We compute the frequency covariance matrix
from the simulated data

Ci j =
1

Np
SST =

1
Np

Np

Â
p=1

T (ni, n̂p)T (n j, n̂p), (17)

where T (ni, n̂p) is the brightness temperature along the direction of
the line-of-sight n̂p and for the frequency channel ni. Therefore, we
can compute the entries of the correlation matrix between each pair
of frequency channels

R jk =
Cjk

C1/2
j j C1/2

kk

, (18)

where the indices run from 1 to Nf . We diagonalise the correlation
matrix of the full data set with an eigenvalue decomposition and
obtain

PT RP = L⌘ diag
�

l1, ...,lNf

 
, (19)

where the diagonal elements of the matrix L are the eigenvalues
l j of the matrix R and the matrix P is an orthogonal matrix which
contains the eigenvectors. The variance of each mode is given by
the amplitude of the eigenvalues l j, so each eigenvalue measures
the contribution of its corresponding eigenvector to the total sky
variance.

This method parameterises the foreground and noise compo-
nents and produces independent eigenfunctions, which convert the
spectral correlation into a number of largest variance modes. We
pick the eigenvalues with the correlated components in frequency
with the larger variances. So, we build a matrix Pc, with only the
corresponding eigenvectors and we use this matrix to decompose
the data into eigenfunctions f

f = PT
c S. (20)

The maps Sc of the reconstructed foreground and 1/ f noise
are obtained by transforming back to the frequency space

Sc = Pcf. (21)

Finally, we find the maps of the reconstructed HI signal SHI by
subtracting the input maps and the reconstructed foreground and
1/ f noise

SHI = S�Sc. (22)

3.2 1/ f noise subtraction using PCA

First, we apply the PCA method to thermal and 1/ f noise com-
ponents only, ignoring foregrounds for the moment. The frequency
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Figure 3. Maps of the drift scan of the instrumental noise. The top panel represents the thermal noise and the bottom panel the 1/ f noise. Note the different
intensity scales. Colour bars represent the temperature in mK.
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vant foregrounds. The removal of the foregrounds and instrumental
1/ f will rely on the smoothness of their frequency spectra. In this
section, we want to quantify how well the foregrounds can be sub-
tracted in the presence of thermal and 1/ f noise. Our philosophy
is to focus on two simple cleaning procedures, parametric fitting
and a blind method with principal component analysis (PCA). We
describe these methods in Section 3.1 and present their results in
Section 3.3. We also demonstrate the possibility of using a blind
method to remove the instrumental 1/ f noise in Section 3.2. In the
following, we assume no systematics array and a perfect calibration
of the data.

3.1 Methods

3.1.1 Parametric fitting

Parametric fitting is a common method to parameterise foregrounds
(e.g. Brandt et al. 1994; Ansari et al. 2012). The approach of the
method is to fit directly an explicit parametric model of the fore-
grounds and noise to each pixel of the maps along the frequency
direction. The common foreground model is a modified power-law,
as the main foreground emission, the Galactic synchrotron, can be
approximated by a parametric distribution with a curvature to first
order (Kogut 2012).

The i-th pixel of the simulated map of the sky at the frequency
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where b is the spectral index and A is the amplitude in mK. The
assumption on the spectral slope of the 1/ f noise can be justified
by the fact that the 1/ f noise fluctuations are expected to have a
spectral form similar to the system temperature, which can be ap-
proximated by a power-law over the BINGO frequency range. We
fit Eq. 16 for each pixel of the map in the frequency direction min-
imised using a least-squares method.

3.1.2 Principal Component Analysis (PCA)

PCA (Murtagh & Heck 1987) has the advantage of being a non-
parametric method and so requires no specific prior information on
the spectra of the foreground and the noise. This method consists

of making the independent maps of each frequency channel into or-
thogonal modes according to the covariance between frequencies.
We consider the data to be a matrix S, with Nf ⇥Np elements. Nf
denotes the number of frequency channels and Np the number of
pixels in the map. We compute the frequency covariance matrix
from the simulated data

Ci j =
1

Np
SST =

1
Np

Np

Â
p=1

T (ni, n̂p)T (n j, n̂p), (17)

where T (ni, n̂p) is the brightness temperature along the direction of
the line-of-sight n̂p and for the frequency channel ni. Therefore, we
can compute the entries of the correlation matrix between each pair
of frequency channels

R jk =
Cjk

C1/2
j j C1/2

kk

, (18)

where the indices run from 1 to Nf . We diagonalise the correlation
matrix of the full data set with an eigenvalue decomposition and
obtain

PT RP = L⌘ diag
�

l1, ...,lNf

 
, (19)

where the diagonal elements of the matrix L are the eigenvalues
l j of the matrix R and the matrix P is an orthogonal matrix which
contains the eigenvectors. The variance of each mode is given by
the amplitude of the eigenvalues l j, so each eigenvalue measures
the contribution of its corresponding eigenvector to the total sky
variance.

This method parameterises the foreground and noise compo-
nents and produces independent eigenfunctions, which convert the
spectral correlation into a number of largest variance modes. We
pick the eigenvalues with the correlated components in frequency
with the larger variances. So, we build a matrix Pc, with only the
corresponding eigenvectors and we use this matrix to decompose
the data into eigenfunctions f

f = PT
c S. (20)

The maps Sc of the reconstructed foreground and 1/ f noise
are obtained by transforming back to the frequency space

Sc = Pcf. (21)

Finally, we find the maps of the reconstructed HI signal SHI by
subtracting the input maps and the reconstructed foreground and
1/ f noise

SHI = S�Sc. (22)

3.2 1/ f noise subtraction using PCA

First, we apply the PCA method to thermal and 1/ f noise com-
ponents only, ignoring foregrounds for the moment. The frequency
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Figure 3. Maps of the drift scan of the instrumental noise. The top panel represents the thermal noise and the bottom panel the 1/ f noise. Note the different
intensity scales. Colour bars represent the temperature in mK.

3 FOREGROUND AND INSTRUMENTAL NOISE
SUBTRACTION

For an observing frequency around 1 GHz, the synchrotron emis-
sion and the extragalactic point sources emission are the most rele-
vant foregrounds. The removal of the foregrounds and instrumental
1/ f will rely on the smoothness of their frequency spectra. In this
section, we want to quantify how well the foregrounds can be sub-
tracted in the presence of thermal and 1/ f noise. Our philosophy
is to focus on two simple cleaning procedures, parametric fitting
and a blind method with principal component analysis (PCA). We
describe these methods in Section 3.1 and present their results in
Section 3.3. We also demonstrate the possibility of using a blind
method to remove the instrumental 1/ f noise in Section 3.2. In the
following, we assume no systematics array and a perfect calibration
of the data.

3.1 Methods

3.1.1 Parametric fitting

Parametric fitting is a common method to parameterise foregrounds
(e.g. Brandt et al. 1994; Ansari et al. 2012). The approach of the
method is to fit directly an explicit parametric model of the fore-
grounds and noise to each pixel of the maps along the frequency
direction. The common foreground model is a modified power-law,
as the main foreground emission, the Galactic synchrotron, can be
approximated by a parametric distribution with a curvature to first
order (Kogut 2012).

The i-th pixel of the simulated map of the sky at the frequency
n j can be written as the sum of the intensity of the HI signal T i

21cm,
the foreground emissions T i

fg and the noise of the instrument T i
n

T̂ i
j = T̂ i
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The hat symbol denotes a modelled quantity. We make the assump-
tion that the foreground T̂fg and 1/ f noise T̂ i

n can be modelled by
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where b is the spectral index and A is the amplitude in mK. The
assumption on the spectral slope of the 1/ f noise can be justified
by the fact that the 1/ f noise fluctuations are expected to have a
spectral form similar to the system temperature, which can be ap-
proximated by a power-law over the BINGO frequency range. We
fit Eq. 16 for each pixel of the map in the frequency direction min-
imised using a least-squares method.

3.1.2 Principal Component Analysis (PCA)

PCA (Murtagh & Heck 1987) has the advantage of being a non-
parametric method and so requires no specific prior information on
the spectra of the foreground and the noise. This method consists

of making the independent maps of each frequency channel into or-
thogonal modes according to the covariance between frequencies.
We consider the data to be a matrix S, with Nf ⇥Np elements. Nf
denotes the number of frequency channels and Np the number of
pixels in the map. We compute the frequency covariance matrix
from the simulated data

Ci j =
1

Np
SST =

1
Np

Np

Â
p=1

T (ni, n̂p)T (n j, n̂p), (17)

where T (ni, n̂p) is the brightness temperature along the direction of
the line-of-sight n̂p and for the frequency channel ni. Therefore, we
can compute the entries of the correlation matrix between each pair
of frequency channels

R jk =
Cjk

C1/2
j j C1/2
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, (18)

where the indices run from 1 to Nf . We diagonalise the correlation
matrix of the full data set with an eigenvalue decomposition and
obtain

PT RP = L⌘ diag
�

l1, ...,lNf

 
, (19)

where the diagonal elements of the matrix L are the eigenvalues
l j of the matrix R and the matrix P is an orthogonal matrix which
contains the eigenvectors. The variance of each mode is given by
the amplitude of the eigenvalues l j, so each eigenvalue measures
the contribution of its corresponding eigenvector to the total sky
variance.

This method parameterises the foreground and noise compo-
nents and produces independent eigenfunctions, which convert the
spectral correlation into a number of largest variance modes. We
pick the eigenvalues with the correlated components in frequency
with the larger variances. So, we build a matrix Pc, with only the
corresponding eigenvectors and we use this matrix to decompose
the data into eigenfunctions f

f = PT
c S. (20)

The maps Sc of the reconstructed foreground and 1/ f noise
are obtained by transforming back to the frequency space

Sc = Pcf. (21)

Finally, we find the maps of the reconstructed HI signal SHI by
subtracting the input maps and the reconstructed foreground and
1/ f noise

SHI = S�Sc. (22)

3.2 1/ f noise subtraction using PCA

First, we apply the PCA method to thermal and 1/ f noise com-
ponents only, ignoring foregrounds for the moment. The frequency
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Figure 3. Maps of the drift scan of the instrumental noise. The top panel represents the thermal noise and the bottom panel the 1/ f noise. Note the different
intensity scales. Colour bars represent the temperature in mK.

3 FOREGROUND AND INSTRUMENTAL NOISE
SUBTRACTION

For an observing frequency around 1 GHz, the synchrotron emis-
sion and the extragalactic point sources emission are the most rele-
vant foregrounds. The removal of the foregrounds and instrumental
1/ f will rely on the smoothness of their frequency spectra. In this
section, we want to quantify how well the foregrounds can be sub-
tracted in the presence of thermal and 1/ f noise. Our philosophy
is to focus on two simple cleaning procedures, parametric fitting
and a blind method with principal component analysis (PCA). We
describe these methods in Section 3.1 and present their results in
Section 3.3. We also demonstrate the possibility of using a blind
method to remove the instrumental 1/ f noise in Section 3.2. In the
following, we assume no systematics array and a perfect calibration
of the data.

3.1 Methods

3.1.1 Parametric fitting

Parametric fitting is a common method to parameterise foregrounds
(e.g. Brandt et al. 1994; Ansari et al. 2012). The approach of the
method is to fit directly an explicit parametric model of the fore-
grounds and noise to each pixel of the maps along the frequency
direction. The common foreground model is a modified power-law,
as the main foreground emission, the Galactic synchrotron, can be
approximated by a parametric distribution with a curvature to first
order (Kogut 2012).

The i-th pixel of the simulated map of the sky at the frequency
n j can be written as the sum of the intensity of the HI signal T i

21cm,
the foreground emissions T i

fg and the noise of the instrument T i
n

T̂ i
j = T̂ i

21cm, j + T̂ i
fg, j + T̂ i

n, j. (15)

The hat symbol denotes a modelled quantity. We make the assump-
tion that the foreground T̂fg and 1/ f noise T̂ i

n can be modelled by
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where b is the spectral index and A is the amplitude in mK. The
assumption on the spectral slope of the 1/ f noise can be justified
by the fact that the 1/ f noise fluctuations are expected to have a
spectral form similar to the system temperature, which can be ap-
proximated by a power-law over the BINGO frequency range. We
fit Eq. 16 for each pixel of the map in the frequency direction min-
imised using a least-squares method.

3.1.2 Principal Component Analysis (PCA)

PCA (Murtagh & Heck 1987) has the advantage of being a non-
parametric method and so requires no specific prior information on
the spectra of the foreground and the noise. This method consists

of making the independent maps of each frequency channel into or-
thogonal modes according to the covariance between frequencies.
We consider the data to be a matrix S, with Nf ⇥Np elements. Nf
denotes the number of frequency channels and Np the number of
pixels in the map. We compute the frequency covariance matrix
from the simulated data

Ci j =
1

Np
SST =

1
Np

Np

Â
p=1

T (ni, n̂p)T (n j, n̂p), (17)

where T (ni, n̂p) is the brightness temperature along the direction of
the line-of-sight n̂p and for the frequency channel ni. Therefore, we
can compute the entries of the correlation matrix between each pair
of frequency channels

R jk =
Cjk

C1/2
j j C1/2

kk

, (18)

where the indices run from 1 to Nf . We diagonalise the correlation
matrix of the full data set with an eigenvalue decomposition and
obtain

PT RP = L⌘ diag
�

l1, ...,lNf

 
, (19)

where the diagonal elements of the matrix L are the eigenvalues
l j of the matrix R and the matrix P is an orthogonal matrix which
contains the eigenvectors. The variance of each mode is given by
the amplitude of the eigenvalues l j, so each eigenvalue measures
the contribution of its corresponding eigenvector to the total sky
variance.

This method parameterises the foreground and noise compo-
nents and produces independent eigenfunctions, which convert the
spectral correlation into a number of largest variance modes. We
pick the eigenvalues with the correlated components in frequency
with the larger variances. So, we build a matrix Pc, with only the
corresponding eigenvectors and we use this matrix to decompose
the data into eigenfunctions f

f = PT
c S. (20)

The maps Sc of the reconstructed foreground and 1/ f noise
are obtained by transforming back to the frequency space

Sc = Pcf. (21)

Finally, we find the maps of the reconstructed HI signal SHI by
subtracting the input maps and the reconstructed foreground and
1/ f noise

SHI = S�Sc. (22)

3.2 1/ f noise subtraction using PCA

First, we apply the PCA method to thermal and 1/ f noise com-
ponents only, ignoring foregrounds for the moment. The frequency
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Figure 3. Maps of the drift scan of the instrumental noise. The top panel represents the thermal noise and the bottom panel the 1/ f noise. Note the different
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3 FOREGROUND AND INSTRUMENTAL NOISE
SUBTRACTION

For an observing frequency around 1 GHz, the synchrotron emis-
sion and the extragalactic point sources emission are the most rele-
vant foregrounds. The removal of the foregrounds and instrumental
1/ f will rely on the smoothness of their frequency spectra. In this
section, we want to quantify how well the foregrounds can be sub-
tracted in the presence of thermal and 1/ f noise. Our philosophy
is to focus on two simple cleaning procedures, parametric fitting
and a blind method with principal component analysis (PCA). We
describe these methods in Section 3.1 and present their results in
Section 3.3. We also demonstrate the possibility of using a blind
method to remove the instrumental 1/ f noise in Section 3.2. In the
following, we assume no systematics array and a perfect calibration
of the data.

3.1 Methods

3.1.1 Parametric fitting

Parametric fitting is a common method to parameterise foregrounds
(e.g. Brandt et al. 1994; Ansari et al. 2012). The approach of the
method is to fit directly an explicit parametric model of the fore-
grounds and noise to each pixel of the maps along the frequency
direction. The common foreground model is a modified power-law,
as the main foreground emission, the Galactic synchrotron, can be
approximated by a parametric distribution with a curvature to first
order (Kogut 2012).

The i-th pixel of the simulated map of the sky at the frequency
n j can be written as the sum of the intensity of the HI signal T i

21cm,
the foreground emissions T i

fg and the noise of the instrument T i
n

T̂ i
j = T̂ i

21cm, j + T̂ i
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n, j. (15)

The hat symbol denotes a modelled quantity. We make the assump-
tion that the foreground T̂fg and 1/ f noise T̂ i

n can be modelled by
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where b is the spectral index and A is the amplitude in mK. The
assumption on the spectral slope of the 1/ f noise can be justified
by the fact that the 1/ f noise fluctuations are expected to have a
spectral form similar to the system temperature, which can be ap-
proximated by a power-law over the BINGO frequency range. We
fit Eq. 16 for each pixel of the map in the frequency direction min-
imised using a least-squares method.

3.1.2 Principal Component Analysis (PCA)

PCA (Murtagh & Heck 1987) has the advantage of being a non-
parametric method and so requires no specific prior information on
the spectra of the foreground and the noise. This method consists

of making the independent maps of each frequency channel into or-
thogonal modes according to the covariance between frequencies.
We consider the data to be a matrix S, with Nf ⇥Np elements. Nf
denotes the number of frequency channels and Np the number of
pixels in the map. We compute the frequency covariance matrix
from the simulated data

Ci j =
1

Np
SST =

1
Np

Np

Â
p=1

T (ni, n̂p)T (n j, n̂p), (17)

where T (ni, n̂p) is the brightness temperature along the direction of
the line-of-sight n̂p and for the frequency channel ni. Therefore, we
can compute the entries of the correlation matrix between each pair
of frequency channels

R jk =
Cjk

C1/2
j j C1/2

kk

, (18)

where the indices run from 1 to Nf . We diagonalise the correlation
matrix of the full data set with an eigenvalue decomposition and
obtain

PT RP = L⌘ diag
�

l1, ...,lNf

 
, (19)

where the diagonal elements of the matrix L are the eigenvalues
l j of the matrix R and the matrix P is an orthogonal matrix which
contains the eigenvectors. The variance of each mode is given by
the amplitude of the eigenvalues l j, so each eigenvalue measures
the contribution of its corresponding eigenvector to the total sky
variance.

This method parameterises the foreground and noise compo-
nents and produces independent eigenfunctions, which convert the
spectral correlation into a number of largest variance modes. We
pick the eigenvalues with the correlated components in frequency
with the larger variances. So, we build a matrix Pc, with only the
corresponding eigenvectors and we use this matrix to decompose
the data into eigenfunctions f

f = PT
c S. (20)

The maps Sc of the reconstructed foreground and 1/ f noise
are obtained by transforming back to the frequency space

Sc = Pcf. (21)

Finally, we find the maps of the reconstructed HI signal SHI by
subtracting the input maps and the reconstructed foreground and
1/ f noise

SHI = S�Sc. (22)

3.2 1/ f noise subtraction using PCA

First, we apply the PCA method to thermal and 1/ f noise com-
ponents only, ignoring foregrounds for the moment. The frequency
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intensity scales. Colour bars represent the temperature in mK.

3 FOREGROUND AND INSTRUMENTAL NOISE
SUBTRACTION

For an observing frequency around 1 GHz, the synchrotron emis-
sion and the extragalactic point sources emission are the most rele-
vant foregrounds. The removal of the foregrounds and instrumental
1/ f will rely on the smoothness of their frequency spectra. In this
section, we want to quantify how well the foregrounds can be sub-
tracted in the presence of thermal and 1/ f noise. Our philosophy
is to focus on two simple cleaning procedures, parametric fitting
and a blind method with principal component analysis (PCA). We
describe these methods in Section 3.1 and present their results in
Section 3.3. We also demonstrate the possibility of using a blind
method to remove the instrumental 1/ f noise in Section 3.2. In the
following, we assume no systematics array and a perfect calibration
of the data.

3.1 Methods

3.1.1 Parametric fitting

Parametric fitting is a common method to parameterise foregrounds
(e.g. Brandt et al. 1994; Ansari et al. 2012). The approach of the
method is to fit directly an explicit parametric model of the fore-
grounds and noise to each pixel of the maps along the frequency
direction. The common foreground model is a modified power-law,
as the main foreground emission, the Galactic synchrotron, can be
approximated by a parametric distribution with a curvature to first
order (Kogut 2012).

The i-th pixel of the simulated map of the sky at the frequency
n j can be written as the sum of the intensity of the HI signal T i

21cm,
the foreground emissions T i

fg and the noise of the instrument T i
n

T̂ i
j = T̂ i

21cm, j + T̂ i
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The hat symbol denotes a modelled quantity. We make the assump-
tion that the foreground T̂fg and 1/ f noise T̂ i

n can be modelled by
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where b is the spectral index and A is the amplitude in mK. The
assumption on the spectral slope of the 1/ f noise can be justified
by the fact that the 1/ f noise fluctuations are expected to have a
spectral form similar to the system temperature, which can be ap-
proximated by a power-law over the BINGO frequency range. We
fit Eq. 16 for each pixel of the map in the frequency direction min-
imised using a least-squares method.

3.1.2 Principal Component Analysis (PCA)

PCA (Murtagh & Heck 1987) has the advantage of being a non-
parametric method and so requires no specific prior information on
the spectra of the foreground and the noise. This method consists

of making the independent maps of each frequency channel into or-
thogonal modes according to the covariance between frequencies.
We consider the data to be a matrix S, with Nf ⇥Np elements. Nf
denotes the number of frequency channels and Np the number of
pixels in the map. We compute the frequency covariance matrix
from the simulated data

Ci j =
1

Np
SST =

1
Np

Np

Â
p=1

T (ni, n̂p)T (n j, n̂p), (17)

where T (ni, n̂p) is the brightness temperature along the direction of
the line-of-sight n̂p and for the frequency channel ni. Therefore, we
can compute the entries of the correlation matrix between each pair
of frequency channels

R jk =
Cjk

C1/2
j j C1/2

kk

, (18)

where the indices run from 1 to Nf . We diagonalise the correlation
matrix of the full data set with an eigenvalue decomposition and
obtain

PT RP = L⌘ diag
�

l1, ...,lNf

 
, (19)

where the diagonal elements of the matrix L are the eigenvalues
l j of the matrix R and the matrix P is an orthogonal matrix which
contains the eigenvectors. The variance of each mode is given by
the amplitude of the eigenvalues l j, so each eigenvalue measures
the contribution of its corresponding eigenvector to the total sky
variance.

This method parameterises the foreground and noise compo-
nents and produces independent eigenfunctions, which convert the
spectral correlation into a number of largest variance modes. We
pick the eigenvalues with the correlated components in frequency
with the larger variances. So, we build a matrix Pc, with only the
corresponding eigenvectors and we use this matrix to decompose
the data into eigenfunctions f

f = PT
c S. (20)

The maps Sc of the reconstructed foreground and 1/ f noise
are obtained by transforming back to the frequency space

Sc = Pcf. (21)

Finally, we find the maps of the reconstructed HI signal SHI by
subtracting the input maps and the reconstructed foreground and
1/ f noise

SHI = S�Sc. (22)

3.2 1/ f noise subtraction using PCA

First, we apply the PCA method to thermal and 1/ f noise com-
ponents only, ignoring foregrounds for the moment. The frequency
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Figure 7. Five versions of a strip in declination of the H I signal. The input cosmological signal is shown in the first strip and the reconstructed signal from
PCA in strips 2, 3 and 4 (after one, three and seven modes removed, respectively) and from parametric fitting in strip 5. Notice the different colour bar scales.

Figure 8. Scatter plot of the recovered H I signal from parametric fitting
(blue markers) and from PCA (red markers) as a function of the input H I

signal. The parametric fitting is more noisy than the PCA and also appears to
be biased. The black dashed line represents the perfect correlation between
the recovered H I signal and the true signal.

where A is the amplitude, ν the frequency of observation and "ν

the wavelength. We explore a range of A between 1 and 150 mK
and a range of "ν between 1 and 300 MHz.

We show the modified spectra for different values of A and "ν

in Fig. 10 for one pixel and one horn. To highlight the impact of
the addition of the sinusoidal wave, we plot the ratio of the re-
sulting spectrum (with the sinusoidal wave) by the original one
(without the sinusoidal wave). We see curvature and/or oscilla-
tions in the resulting spectra. A higher value of "ν leads to a
curvature of the spectrum, similar to a standing wave, whereas a
smaller value induces a sinusoidal wave that behaves in a simi-
lar way to noise, when "ν is smaller than the frequency channel
width.

In what follows, we simulate the maps generated by the instru-
ment with the same model of the Galactic synchrotron emission, H I

signal and instrumental noise (thermal and 1/f noise), and we add in
equation (26) the sinusoidal wave to the frequency spectrum of the
generated data. In order to extract the signal of interest, we apply
the PCA to the maps. In Fig. 11, we plot the relative error of the
recovered H I signal as a function of the amplitude A and "ν after
applying PCA with six modes subtracted. The colour bar represents
the amplitude of the relative error between the recovered H I signal
and the true signal. The smoothness of the frequency spectrum, i.e.
the value of "ν, has a significative impact on the efficiency of the
cleaning methods. The relative error increases with a small value of
"ν, which corresponds to a sinusoidal wave with a period shorter
than the frequency channel width. In order not to be affected by
the variation of the bandpass, the value of "ν has to be lower than
100 MHz and the amplitude A has to be below 45 mK. With the
values A < 40 mK and "ν < 100 MHz, we find a relative error
<7.3 per cent after six modes are subtracted with the PCA. In abso-
lute terms, after subtracting six principal modes, we obtain residuals
lower than 0.1 mK, which means that the H I signal can be detected.

Finally, we perform simulations varying the number of frequency
channels used to perform the PCA. In what follows, we consider
the foreground emission with Galactic synchrotron emission and
extragalactic point sources. We consider 20 frequency channels
(15 MHz channel bandwidth) and 200 frequency channels (1.5 MHz
channel width), and we test different values of "ν. We choose the
amplitude of the sinusoidal wave to A = 120 mK. Fig. 12 shows the
relative error between the recovered H I signal and the input signal
as a function of the smoothness of the frequency spectrum "ν after
removing six and seven principal modes. We find that the PCA
method does better with a larger number of channels. The relative
error is <7 per cent for six removed modes when we have 200
frequency channels for all values of "ν between 1 and 400 MHz.
The reason for the improvement when more channels are added
can be understood by the fact that the frequency band is better
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Figure 9. Top panel: the power spectra of the simulated maps after applying
foreground cleaning. This plot shows the simulated H I signal (blue solid
line), the thermal noise (green solid line) and the sky emission (cyan solid
line). We plot the results of the foreground cleaning from PCA (black dashed
line) and from parametric fitting (red dashed line). Bottom panel: the power
spectra of the leakage of the H I signal (light blue dashed line) and of the
noise (gold dashed line) after applying PCA. The PCA method clearly makes
it possible to extract the H I signal.

Figure 10. The corrupted spectrum divided by the original, undistorted,
spectrum for different versions of the sinusoidal wave. A small value of !ν

induces a spectrum that fluctuates in frequency in a similar way to random
noise, while a large value of !ν leads to a curvature of the frequency
spectrum.

Figure 11. Relative error as a function of the amplitude A and the period !ν

of the sinusoidal wave after foreground and noise subtraction after applying
PCA (six modes removed). The values A and !ν of the sinusoidal waves
are indicated on the axes of the plot. The colour bar gives the percentage
error relative to the noise.

Figure 12. The percentage relative error as a function of the period !ν of
the sinusoidal wave after foreground removal. We show the relative errors
for 20 frequency channels with six modes removed (blue markers), for 20
frequency channels with seven modes removed (green markers) and for
200 frequency channels with six and seven modes removed (red and black
markers), respectively.

sampled. Thus, as long as we have a frequency spectrum with slow
oscillations, or enough frequency channels to sample the spectrum
with sufficient accuracy, the smoothness of the bandpass does not
constitute an issue for the foreground and the 1/f noise cleaning
methods. An amplitude around 40 mK requires the bandpass to be
calibrated to an accuracy of better than 1 part in 1000. However, one
would expect to calibrate at least every day so we will only require
a dynamic range of 1 part in 50.

5 C O N C L U S I O N

In Section 2, we have simulated the kind of data which would
be produced in a single-dish intensity mapping experiment like
BINGO. We have adopted a sky model with Galactic synchrotron
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Figure 9. Top panel: the power spectra of the simulated maps after applying
foreground cleaning. This plot shows the simulated H I signal (blue solid
line), the thermal noise (green solid line) and the sky emission (cyan solid
line). We plot the results of the foreground cleaning from PCA (black dashed
line) and from parametric fitting (red dashed line). Bottom panel: the power
spectra of the leakage of the H I signal (light blue dashed line) and of the
noise (gold dashed line) after applying PCA. The PCA method clearly makes
it possible to extract the H I signal.

Figure 10. The corrupted spectrum divided by the original, undistorted,
spectrum for different versions of the sinusoidal wave. A small value of !ν

induces a spectrum that fluctuates in frequency in a similar way to random
noise, while a large value of !ν leads to a curvature of the frequency
spectrum.

Figure 11. Relative error as a function of the amplitude A and the period !ν

of the sinusoidal wave after foreground and noise subtraction after applying
PCA (six modes removed). The values A and !ν of the sinusoidal waves
are indicated on the axes of the plot. The colour bar gives the percentage
error relative to the noise.

Figure 12. The percentage relative error as a function of the period !ν of
the sinusoidal wave after foreground removal. We show the relative errors
for 20 frequency channels with six modes removed (blue markers), for 20
frequency channels with seven modes removed (green markers) and for
200 frequency channels with six and seven modes removed (red and black
markers), respectively.

sampled. Thus, as long as we have a frequency spectrum with slow
oscillations, or enough frequency channels to sample the spectrum
with sufficient accuracy, the smoothness of the bandpass does not
constitute an issue for the foreground and the 1/f noise cleaning
methods. An amplitude around 40 mK requires the bandpass to be
calibrated to an accuracy of better than 1 part in 1000. However, one
would expect to calibrate at least every day so we will only require
a dynamic range of 1 part in 50.

5 C O N C L U S I O N

In Section 2, we have simulated the kind of data which would
be produced in a single-dish intensity mapping experiment like
BINGO. We have adopted a sky model with Galactic synchrotron
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Figure 7. Five versions of a strip in declination of the H I signal. The input cosmological signal is shown in the first strip and the reconstructed signal from
PCA in strips 2, 3 and 4 (after one, three and seven modes removed, respectively) and from parametric fitting in strip 5. Notice the different colour bar scales.

Figure 8. Scatter plot of the recovered H I signal from parametric fitting
(blue markers) and from PCA (red markers) as a function of the input H I

signal. The parametric fitting is more noisy than the PCA and also appears to
be biased. The black dashed line represents the perfect correlation between
the recovered H I signal and the true signal.

where A is the amplitude, ν the frequency of observation and "ν

the wavelength. We explore a range of A between 1 and 150 mK
and a range of "ν between 1 and 300 MHz.

We show the modified spectra for different values of A and "ν

in Fig. 10 for one pixel and one horn. To highlight the impact of
the addition of the sinusoidal wave, we plot the ratio of the re-
sulting spectrum (with the sinusoidal wave) by the original one
(without the sinusoidal wave). We see curvature and/or oscilla-
tions in the resulting spectra. A higher value of "ν leads to a
curvature of the spectrum, similar to a standing wave, whereas a
smaller value induces a sinusoidal wave that behaves in a simi-
lar way to noise, when "ν is smaller than the frequency channel
width.

In what follows, we simulate the maps generated by the instru-
ment with the same model of the Galactic synchrotron emission, H I

signal and instrumental noise (thermal and 1/f noise), and we add in
equation (26) the sinusoidal wave to the frequency spectrum of the
generated data. In order to extract the signal of interest, we apply
the PCA to the maps. In Fig. 11, we plot the relative error of the
recovered H I signal as a function of the amplitude A and "ν after
applying PCA with six modes subtracted. The colour bar represents
the amplitude of the relative error between the recovered H I signal
and the true signal. The smoothness of the frequency spectrum, i.e.
the value of "ν, has a significative impact on the efficiency of the
cleaning methods. The relative error increases with a small value of
"ν, which corresponds to a sinusoidal wave with a period shorter
than the frequency channel width. In order not to be affected by
the variation of the bandpass, the value of "ν has to be lower than
100 MHz and the amplitude A has to be below 45 mK. With the
values A < 40 mK and "ν < 100 MHz, we find a relative error
<7.3 per cent after six modes are subtracted with the PCA. In abso-
lute terms, after subtracting six principal modes, we obtain residuals
lower than 0.1 mK, which means that the H I signal can be detected.

Finally, we perform simulations varying the number of frequency
channels used to perform the PCA. In what follows, we consider
the foreground emission with Galactic synchrotron emission and
extragalactic point sources. We consider 20 frequency channels
(15 MHz channel bandwidth) and 200 frequency channels (1.5 MHz
channel width), and we test different values of "ν. We choose the
amplitude of the sinusoidal wave to A = 120 mK. Fig. 12 shows the
relative error between the recovered H I signal and the input signal
as a function of the smoothness of the frequency spectrum "ν after
removing six and seven principal modes. We find that the PCA
method does better with a larger number of channels. The relative
error is <7 per cent for six removed modes when we have 200
frequency channels for all values of "ν between 1 and 400 MHz.
The reason for the improvement when more channels are added
can be understood by the fact that the frequency band is better

MNRAS 454, 3240–3253 (2015)

 at U
N

IV
ER

SITY
 K

W
A

ZU
LU

-N
A

TA
L on N

ovem
ber 5, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

Simulations for single-dish intensity mapping 3247

Figure 5. Top panel: brightness temperature of one particular line of sight
as a function of frequency composed of sky emissions and instrumental
noise ( blue solid line), averaged over 20 realizations and the fit based on a
parametric fitting (red dashed line). Bottom panel: the recovered H I signal
from parametric fitting (red dashed line) and from PCA (black dashed line).
We show the input H I (blue solid line) and the thermal noise (green solid
line).

measurements as a function of frequency, for a random line of sight,
with the synchrotron model 3 quantified in Table 1 and a back-
ground of unresolved point sources (S < 100 mJy) as explained
in Section 2.1.2. The result is averaged over 20 realizations of the
instrumental noise (thermal and 1/f noise). The top panel represents
the simulated measurements and the reconstructed foreground emis-
sion with parametric fitting, highlighting the smooth component of
the foreground. The bottom panel represents the recovered cosmo-
logical signal with parametric fitting and PCA after removing seven
modes compared to the input one. It shows that the parametric fit-
ting, while superficially in agreement with the input signal, does
not provide an accurate fit to the signal of interest compared to the
PCA method. We would like to emphasize that we assume only two
degrees of freedom for the parametric fitting; we could have used a
polynomial fitting in log–log space with an arbitrary order. Alonso
et al. (2015) show that PCA and polynomial fitting in log–log space
give similar performances for the same degrees of freedom as long
as the parametric method used for polynomial fitting describes the
foreground with enough accuracy.

3.3.2 Results of PCA applied to sky maps

Fig. 5 shows that PCA induces a small offset in the reconstructed
H I signal: some cosmological signal leaks into the reconstructed
foreground and noise components. However, with this method, the
H I signal is well recovered with a relative error of ∼7 per cent.

Here we will quantify the impact of the foreground residuals
on the reconstructed H I signal after applying the PCA method to

Figure 6. The percentage relative error of the thermal noise as a function of
the number of modes removed. We plot the error for a foreground model with
a background of unresolved point sources and Galactic synchrotron emission
with a constant index β = −2.8 ( red dashed line), with the introduction of
the random spatial distribution of the index β across the sky ( green dashed
line), and with correlated spatial and spectral variations of the index β plus a
background of unresolved point sources (black dashed line). These models
correspond, respectively, to models 1, 2 and 3 explained in Table 1. The
relative error increases significatively above 10 modes due to the leakage
of the cosmological signal into the reconstructed foreground and correlated
noise components.

the simulated sky maps. In order to check the effectiveness of the
foreground removal method, we define the relative error by

|TH I(ν) − T̂H I(ν)|/σn, (23)

where TH I(ν) is the true H I signal at frequency ν, T̂H I(ν) the recov-
ered signal and σ n the standard deviation of the thermal noise. In the
following, the relative error is computed over all pixels and for the
single frequency channel centred at 997.5 MHz. Fig. 6 represents
the relative error as a function of the number of subtracted modes
for a simulation with H I signal, 1/f and thermal noise and different
models of foreground. We apply the PCA technique to each of the
foreground models discussed in Section 2.1.1.

Since the foreground and the 1/f noise spectra do not contain
sharp features, we can expect that they are well described by a small
number of eigenvectors, so the eigenvalues are much larger for the
first few principal components. This implies that a small number of
components contains almost all of the foreground emission and the
1/f noise. Fig. 6 shows a fall-off of the amplitude of the eigenvalues
with an increase in the value of the number of principal components.
This steep drop means that the spectra are dominated by relatively
few components, which are related to the foreground and smooth
instrumental contamination. Furthermore, this figure shows that the
foreground model has an impact on the extraction of the H I signal as
the most complex foreground model (model 3) requires more modes
to be removed in order to subtract the same level of foreground
contamination. With the same noise model, the first foreground
model requires the removal of at least three principal modes, the
second model four modes and the third model seven modes. The
difference between models 2 and 3 is the addition of the curvature of
the synchrotron index as both models contain a spatial distribution
of the synchrotron index: random and correlated for models 2 and
3, respectively. So, including a curvature of the synchrotron index
with frequency leads to a more complicated foreground model, and
so requires us to subtract more modes than a synchrotron model
with only a spatial distribution of the synchrotron index.
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spurious signals requires a combination of careful modelling and a
well designed observing strategy.

This work will focus on the contamination of SD observations
by 1/ f noise, which is a form of correlated noise that is ubiquitous
to radio receiver systems and manifests as small gain fluctuations.
When binned into a map of the sky 1/ f noise manifests as large-
scale spatial fluctuations that are not trivial to separate from the true
underlying sky signal. Exactly how the the fluctuations manifest in
sky maps depends on the noise properties (for example: the Gaus-
sianity of the noise, the characteristic time scale of the fluctuations
or whether it is stationary) and the details of the observing strategy.
For these reasons 1/ f noise has for a long time has been of interest
to SD observers in both radio (e.g., Seiffert et al. 2002) and sub-
millimetre (e.g., Emerson & Graeve 1988; Traficante et al. 2011).
The removal of 1/ f noise has also become an area of research that
has resulted in several advanced map-making methods (e.g., Natoli
et al. 2001; Sutton et al. 2010).

Before discussing 1/ f noise it should be made clear that it is
a phenomenon separate to the well understood concept of thermal
noise. Thermal noise is caused by the thermal motion of charge
carriers and has an r.m.s. related to the noise temperature of the
receiver through the well known radiometer equation

s = ATsys

r
fsr
dn

, (2)

where A is constant that is dependent on the receiver system of or-
der unity (Wilson et al. 2009), Tsys is the system temperature, fsr is
the sample rate, and dn is the system channel width. Thermal noise
can be accurately modelled as a Gaussian white noise distribution
(Wilson et al. 2009).

There have been several proposed physical explanations for
1/ f noise within electronic circuits stemming from its initial dis-
covery (Johnson 1925; Nyquist 1928). However, even with its
prevalence in a range of physical systems including cognition
(Gilden et al. 1995), biomechanics (Kobayashi & Musha 1982),
geological records (Mandelbrot & Wallis 1969), music (Voss &
Clarke 1978), and others (e.g., Press 1978), a fundamental descrip-
tion of 1/ f noise has yet to be found. Fortunately 1/ f noise can still
be modelled and phenomenologically described by a small number
of statistical properties.

It is common in astronomy to define the PSD of a receiver
contaminated with thermal and 1/ f noise as (e.g., Seiffert et al.
2002; Bigot-Sazy et al. 2015)

PSD( f ) =
T 2

sys

dn


1+

✓
fk
f

◆a�
, (3)

where Tsys is the system temperature of the receiver, dn is the chan-
nel bandwidth, fk is known as the knee frequency, and a is spectral
index of the noise. The unity term inside the brackets of Eqn. 3
describes the thermal noise contribution and the 1/ f noise is de-
scribed by the reciprocal power-law on the right. The reciprocal
power-law, from which 1/ f noise derives its name, is its key prop-
erty and implies that for a > 0 long time-scale fluctuations will
have more power than short time scale fluctuations. It is common
to find named types of 1/ f noise that describe specific spectral
indices, such as pink noise (a = 1), and brown noise (a = 2), or
sometimes generally referred to as red noise for any a > 0. An-
other property of 1/ f noise is that the fluctuations need not be
Gaussian distributed, which could impact how it averages down
over time. However, in this work it is assumed that 1/ f noise does
have Gaussian properties, this should be confirmed through mea-
surements from real receiver systems. A third important property

of 1/ f noise is that Eqn. 3 only defines it for a finite period, as the
1/ f noise term in Eqn. 3 is unbounded and tends to infinity at the
zeroth frequency. This of course cannot be true because it would be
in violation of both Parseval’s theorem and conservation of energy.
One simple solution to this paradox would be to suppose that on
some sufficiently long time-scale the 1/ f PSD flattens. This must
be true, but intriguingly, for semi-conductors at least, no such turn
off has been observed even after months of continuous observation
(Caloyannides 1974; Mandal et al. 2009). For real astronomical ob-
servations this is also not true as no observation is taken over infi-
nite time, and data calibration effectively acts as a high-pass filter
on the lowest frequency 1/ f noise modes.

For many past CMB and other SD experiments each receiver
has a single output that is integrated over a wide bandwidth. There-
fore the 1/ f noise fluctuations in each receiver are entirely inde-
pendent and as such can be sufficiently characterised by the param-
eters fk and a from Eqn. 3. For the spectroscopic receivers used in
IM experiments each receiver will have many outputs. In this in-
stance the 1/ f noise fluctuations in two output channels from one
receiver are likely to be highly correlated. Similarly, the width of
each channel is arbitrary with wider channels having lower thermal
noise levels. However, if the 1/ f noise is highly correlated then it
will not average down with wider channel widths and so will ef-
fectively increase the fk defined in Eqn. 3. For this reason the use
of fk to characterise 1/ f noise properties of a spectroscopic sys-
tem should be used with care, as it depends on both the channel
bandwidth and the correlations of the 1/ f noise in frequency .

At present there is very little known about the frequency cor-
relations of 1/ f noise in spectroscopic receivers. This work will
explore the impact of frequency correlated 1/ f noise on a simu-
lated SKA HI IM survey. Due to lack of knowledge as to what the
true functional form for the PSD of frequency correlated 1/ f noise
may be, a simple power-law model is adopted. Modifying Eqn. 3
to include frequency correlations results in

PSD( f ,w) =
T 2

sys

dn

2

41+C(b,Nn)
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f
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wDn
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b

3

5 , (4)

where w is the inverse spectroscopic frequency wavenumber, Dn is
the total receiver bandwidth, b is used to parametrise the spectral
index of the PSD, and C(b,Nn) is a constant that is discussed in
more detail in Section 3.3. Eqn. 4 describes a 2-dimensional PSD
for which the temporal and spectroscopic 1/ f noise fluctuations
are separable. The spectral index of the frequency correlations is
defined in the limits 0 < b < 1, where b = 0 describes 1/ f noise
fluctuations that are identical in every frequency channel, whereas
b = 1 would describe 1/ f noise that is independent in every chan-
nel. In Section 3.3 the 1/ f noise model and simulations will be
discussed in detail.

Fig. 1 shows a toy example of Eqn. 4, taking slices of the PSD
along the smallest wavenumber mode in time and frequency for an
arbitrary receiver system with a b = 0.25 and a = 1. It is expected
that 1/ f noise will be highly correlated, and as such the b value will
be small. Fig. 1 shows that in this case the spectroscopic 1/ f noise
slope will be very steep, and may only dominate on the very largest
spectroscopic scales making measurements of b challenging. Fig. 1
also defines a knee for the spectroscopic 1/ f noise fluctuations (wk)
that is not defined in Eqn. 4. This knee is intrinsically linked to the
temporal knee frequency fk by

wk = ( fkTobs)
ab

1�b Dn�1, (5)
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Figure 1. The power spectral density of the temporal (top) and spectro-
scopic (bottom) 1/ f noise as described by Eqn. 4. Both plots have the same
thermal noise level (w2

w), and an a = 1 and a b = 0.25 for the temporal
and spectroscopic PSD respectively. The black line is the combined spec-
tral power of the 1/ f noise slope and the thermal noise. Both the thermal
noise and the 1/ f noise have equal spectral power at fk and wk marked by
the red dotted-line in the top and bottom plots respectively.

where Tobs is the total observing time per receiver and Dn is the
total bandwidth of the receiver.

3 PIPELINE AND SIMULATIONS

Mock datasets are a crucial component of any precision cosmology
experiment. For systematics in radiometers that are time dependent,
the only way to study how these contaminants interact with the sig-
nal of interest is through end-to-end simulations. Within this sec-
tion a description of an end-to-end simulation pipeline for SD HI
IM experiments is given. The pipeline simulates the expected to-
tal power outputs from each radiometer within an arbitrary array.
This includes modelling the telescope array and scanning strategy
in subsection 3.1, the expected emission from sky (including the
cosmological HI signal) in subsection 3.2, and the generation of the
1/ f noise signal in subsection 3.3. The pipeline has been designed
to be modular such that in the future it can be expanded to include

Table 1. Input parameters describing the simulated SKA1-MID array
and instrumentation.

Description Parameter Value

Dish Diameter Ddish 15 ma

No. Dishes Ndish 200
Receiver + CMB TCMB +Trx 20 Kb

No. Polarimeters Npol 2
No. Channels Nn 23
Bandwidth Dn 950 < n < 1410 MHz
Channel width dn 20 MHz
Sample Rate fsr 4 Hz
Integration Time Tobs 30 days
Elevation E 55 deg
Slew Speed vt 0.5 < vt < 2.0 deg s�1

a The slightly smaller dish sizes used in the MeerKAT array
(Ddish = 13.5 m) is ignored for simplicity.

b The total system temperature also includes a frequency and
position dependent contribution from the sky, however the
receiver temperature (Trx) and CMB temperature
(TCMB = 2.73 K) are assumed to be constant.

other systematics expected to impact HI IM experiments such as
RFI, standing waves, calibration errors and more. The pipeline is
written in a combination of Python and FORTRAN, and makes use of
MPI functionality though the MPI4Py module (Dalcin et al. 2011).

3.1 Instrument Design

The simulated SKA array described in this Section is based on the
design outlined in the SKA 2016 baseline document SKA Col-
laboration et al. (2016), and several recent SKA HI IM forecast
and modelling papers (Santos et al. 2015; Bull et al. 2015; Alonso
et al. 2015; Villaescusa-Navarro et al. 2017). The simulated survey
will use a subset of the Band 2 frequencies spanning the frequency
range 950 < n < 1410 MHz with Nn = 23 frequency channels, each
with a channel width of dn = 20 MHz. The choice of channel width
was motivated to optimise between the effectiveness of the compo-
nent separation, which performs better with more channels (Oli-
vari et al. 2016), and computational efficiency. The corresponding
upper redshift limit will be z ⇡ 0.5. The choice of Band 2 over
Band 1 is based on the limited resolution of the SKA1-MID dishes
at redshifts greater than z > 0.5 resulting in an insensitivity to the
BAO signal as discussed in Section 2. The number of dishes used is
Ndish = 200, which is several more than the current baseline SKA
description, but parametrisation of the results presented later will
allow this number to be scaled to that of the resulting final array.
The precise telescope positions do not have a significant impact
on the final results. Table 1 provides a description of all the other
parameters.

The beam of each telescope is assumed to be Gaussian and the
full-width half-maximum (FWHM) of the beam scales with wave-
length (l) as

qFWHM = 1.1
l

Ddish
. (6)

The scaling factor of 1.1 comes from measurements of the SKA-
MID primary beam models (Robert Lehmensiek, priv. comm.). For
these simulations it is assumed that all observations are taken at
the same resolution equal to the resolution at 950 MHz, which cor-
responds to qFWHM = 1.33 deg. This approximation was made to
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(a) b = 0.25, a = 1, fk = 1 Hz (b) b = 0.5, a = 1, fk = 1 Hz

(c) b = 0.75, a = 1, fk = 1 Hz (d) b = 1.0, a = 1, fk = 1 Hz

Figure 3. Time-frequency plots of 1/ f noise generated using the simulation pipeline. Fig. 3a is example of highly correlated 1/ f noise (b = 0.25), while
Fig. 3b (b = 0.5) and Fig. 3c (b = 0.75) are increasingly uncorrelated in frequency, and finally Fig. 3d (b = 1) is an example of completely uncorrelated 1/f
noise where each channel has a unique noise realisation. The images represent waterfall plots, with time along the x-axis and frequency along the y-axis. The
parallel and vertical plots associated with each image are slices along either a single channel or time interval respectively. These figures do not include any
white noise contribution.

where the average now is over many HI sky realisations and B` is a
beam window function.

The spherical harmonic transform and power spectrum esti-
mation of the simulated maps were performed using the publicly
available PolSpice software (Chon et al. 2004). As only a partial
fraction of the sky was observed, neighbouring C` components will
be correlated. The correlations can be damped by binning compo-
nents in ` with an approximate analytical bin width of (Hauser &
Peebles 1973)

D`⇡ p
Dq0

, (26)

where Dq0 is the span of the polar angle over the observed sky
area. For these simulations a binning width of D` = 5 was cho-
sen. To further reduce the impact of the masked sky the correlation
functions were apodized by 110 deg, with a maximum angular size
set to 110 deg. These values were determined empirically by find-
ing the values that minimized high-` ringing while not biasing the
recovered angular power spectrum at small-`.

Before power spectrum estimation each map is smoothed to a
common FWHM resolution of 1.3 deg (corresponding to the reso-
lution in the 950 MHz channel). As smoothing is performed after
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Figure 2. Cartesian projections in celestial coordinates of the simulated SKA HI IM survey strip for (from top to bottom): Galactic synchrotron emission (K),
Galactic free-free emission (K), the cosmic HI intensity field (mK), the combined sky emission (K), and the integration time distribution per pixel (seconds)
for the adopted scanning strategy. All images use a HEALPix grid with Nside = 512 and centred at Right Ascension a = 0 and Declination d =�28.5 deg. All
colour scales are linear with high brightness regions saturated to highlight the low brightness emission. Due to the projection of spherical data onto a Cartesian
plane low declination region will look stretched in the Right Ascension direction.
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in frequency and harmonic space). Then Subsections 4.3, 4.4, and
4.5 will describe the impact of 1/ f noise on the recovery of the
HI angular power spectrum in terms of first the increased statistical
uncertainty, second through a bias term, and finally the combined
impact of these two terms respectively.

4.1 Parameter Space

The discussions of 1/ f noise in Section 3.3 imply that there are
four key parameters that must be considered: the spectral index of
the temporal 1/ f fluctuations (a), the proxy for the spectral index
of the 1/ f frequency fluctuations (b), the telescope scanning speed
(vt), and the 1/ f knee frequency ( fk) at 20 MHz channel width. The
full range of parameters explored by these simulations are listed
in Table 2. For each input parameter there are 100 Monte-Carlo
realisations.

For most of the discussions in this Section a baseline reference
simulation will be used with fixed parameters of a = 1 and vt =
1deg s�1.

4.2 Simulated 1/f Power Spectra

To begin this Section will examine the properties of the simulated
1/ f noise outputs. Fig. 5 shows a comparison between the angular
power spectra of the foregrounds, input HI and 1/ f noise for dif-
ferent knee frequencies with a slew speed of 1 deg s�1 and b = 1.
For knee frequencies less than 10 mHz the thermal noise power is
greater than the 1/ f noise power at all temporal scales for a chan-
nel width of 20 MHz. When the knee frequency approaches 1 Hz
then the amplitude of the 1/ f noise at low-` is comparable to the
amplitude of the underlying HI signal. It is critical to be aware of
the knee frequency at which the 1/ f noise exceeds the HI signal
because it will be shown in the results later in this Section that the
impact of 1/ f noise on the recovered HI angular power spectrum
is most significant when the 1/ f noise power is comparable to or
exceeds the HI angular power.

Fig. 6 shows the same information as Fig. 5 but in 2D for just
1 Hz knee frequency 1/ f noise assuming the baseline model. As
the 1/ f noise is coupled to the foreground brightness, the 1/ f noise
angular power spectrum amplitude is slightly larger at low frequen-
cies. Conversely, the amplitude of the HI variations decrease at low
frequency. This results in the 1/ f noise having significantly more
impact on high redshift observations than low redshift observations.
The impact of this on the low redshift simulations discussed here is
small, but it could potentially become problematic for high redshift
EoR HI IM surveys. Similarly, the 1/ f noise impacts large-scales
more than small-scales, leading to a decreased SNR at `< 20.

Another informative way to view the 1/ f noise is through the
reprojection of the spherical harmonic coefficients into a 2D im-
age. Fig. 7 shows the standard deviation of the a`m’s for 100 dif-
ferent 1/ f noise and input HI realisations. The mapping between
the x� y Cartesian grid and the `�m plane is x = `�m and y = `
where it has been assumed that there is a diagonal symmetry such
that m = �m. The images in Fig. 7 reveal that the combination of
the correlated 1/ f noise with the observing strategy preferentially
gives more power to some a`m’s over others and has a structure dis-
tinct from the underlying HI signal. The difference in the noise and
the HI imply that there is a possibility of performing component
separation in the harmonic space of the data, which may be com-
plementary to performing component separation in image space.
Though not explored further by this work, such differences in the

Figure 5. Angular power spectra of the foregrounds signal (blue), HI (or-
ange), thermal noise (red) and 1/ f noise with different knee frequencies
(black lines). These power spectra are for 20 MHz wide channels in the
centre of SKA band 2 at 1190 MHz.

Figure 6. Distribution of 1/ f noise angular power spectra with frequency
and ` for the baseline model with fk = 1 Hz. The colour scale shows the
1/ f noise angular power, which is largely constant with frequency and a
power law in `. The contours show the equivalent input HI angular power
spectrum. Both colour scale and contours are in units of µK2.

harmonic structure does lead to the possibility of novel power spec-
trum analysis methods such as m-mode analysis (Shaw et al. 2014,
2015; Berger et al. 2017).

In the above cases, and for the rest of the results presented in
this paper, the simulation survey is taken to last 30 days. However,
it would be interesting to know whether the results presented here
can be simply scaled to different total observing times, number of
telescopes or survey sky area. To determine this, SKA simulations
for periods of 2 to 512 days were generated that include only 1/ f
noise with a= 1 and a= 2. As may be expected, as the 1/ f noise is
simulated with Gaussian random variates and stationary values of
a and fk, the r.m.s. of the maps decrease as 1/

p
Tobs. Exploration

of how the r.m.s. of non-Gaussian and non-stationary 1/ f noise is
left to future work.

4.3 Power Spectra Uncertainty

The first question to ask of the 1/ f noise in an SKA HI IM survey
is how much additional statistical uncertainty does it contribute to
the recovered angular power spectrum. One method of determining
this is to measure the SNR of the input signal with the combined
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in frequency and harmonic space). Then Subsections 4.3, 4.4, and
4.5 will describe the impact of 1/ f noise on the recovery of the
HI angular power spectrum in terms of first the increased statistical
uncertainty, second through a bias term, and finally the combined
impact of these two terms respectively.

4.1 Parameter Space

The discussions of 1/ f noise in Section 3.3 imply that there are
four key parameters that must be considered: the spectral index of
the temporal 1/ f fluctuations (a), the proxy for the spectral index
of the 1/ f frequency fluctuations (b), the telescope scanning speed
(vt), and the 1/ f knee frequency ( fk) at 20 MHz channel width. The
full range of parameters explored by these simulations are listed
in Table 2. For each input parameter there are 100 Monte-Carlo
realisations.

For most of the discussions in this Section a baseline reference
simulation will be used with fixed parameters of a = 1 and vt =
1deg s�1.

4.2 Simulated 1/f Power Spectra

To begin this Section will examine the properties of the simulated
1/ f noise outputs. Fig. 5 shows a comparison between the angular
power spectra of the foregrounds, input HI and 1/ f noise for dif-
ferent knee frequencies with a slew speed of 1 deg s�1 and b = 1.
For knee frequencies less than 10 mHz the thermal noise power is
greater than the 1/ f noise power at all temporal scales for a chan-
nel width of 20 MHz. When the knee frequency approaches 1 Hz
then the amplitude of the 1/ f noise at low-` is comparable to the
amplitude of the underlying HI signal. It is critical to be aware of
the knee frequency at which the 1/ f noise exceeds the HI signal
because it will be shown in the results later in this Section that the
impact of 1/ f noise on the recovered HI angular power spectrum
is most significant when the 1/ f noise power is comparable to or
exceeds the HI angular power.

Fig. 6 shows the same information as Fig. 5 but in 2D for just
1 Hz knee frequency 1/ f noise assuming the baseline model. As
the 1/ f noise is coupled to the foreground brightness, the 1/ f noise
angular power spectrum amplitude is slightly larger at low frequen-
cies. Conversely, the amplitude of the HI variations decrease at low
frequency. This results in the 1/ f noise having significantly more
impact on high redshift observations than low redshift observations.
The impact of this on the low redshift simulations discussed here is
small, but it could potentially become problematic for high redshift
EoR HI IM surveys. Similarly, the 1/ f noise impacts large-scales
more than small-scales, leading to a decreased SNR at `< 20.

Another informative way to view the 1/ f noise is through the
reprojection of the spherical harmonic coefficients into a 2D im-
age. Fig. 7 shows the standard deviation of the a`m’s for 100 dif-
ferent 1/ f noise and input HI realisations. The mapping between
the x� y Cartesian grid and the `�m plane is x = `�m and y = `
where it has been assumed that there is a diagonal symmetry such
that m = �m. The images in Fig. 7 reveal that the combination of
the correlated 1/ f noise with the observing strategy preferentially
gives more power to some a`m’s over others and has a structure dis-
tinct from the underlying HI signal. The difference in the noise and
the HI imply that there is a possibility of performing component
separation in the harmonic space of the data, which may be com-
plementary to performing component separation in image space.
Though not explored further by this work, such differences in the

Figure 5. Angular power spectra of the foregrounds signal (blue), HI (or-
ange), thermal noise (red) and 1/ f noise with different knee frequencies
(black lines). These power spectra are for 20 MHz wide channels in the
centre of SKA band 2 at 1190 MHz.

Figure 6. Distribution of 1/ f noise angular power spectra with frequency
and ` for the baseline model with fk = 1 Hz. The colour scale shows the
1/ f noise angular power, which is largely constant with frequency and a
power law in `. The contours show the equivalent input HI angular power
spectrum. Both colour scale and contours are in units of µK2.

harmonic structure does lead to the possibility of novel power spec-
trum analysis methods such as m-mode analysis (Shaw et al. 2014,
2015; Berger et al. 2017).

In the above cases, and for the rest of the results presented in
this paper, the simulation survey is taken to last 30 days. However,
it would be interesting to know whether the results presented here
can be simply scaled to different total observing times, number of
telescopes or survey sky area. To determine this, SKA simulations
for periods of 2 to 512 days were generated that include only 1/ f
noise with a= 1 and a= 2. As may be expected, as the 1/ f noise is
simulated with Gaussian random variates and stationary values of
a and fk, the r.m.s. of the maps decrease as 1/

p
Tobs. Exploration

of how the r.m.s. of non-Gaussian and non-stationary 1/ f noise is
left to future work.

4.3 Power Spectra Uncertainty

The first question to ask of the 1/ f noise in an SKA HI IM survey
is how much additional statistical uncertainty does it contribute to
the recovered angular power spectrum. One method of determining
this is to measure the SNR of the input signal with the combined
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Figure 9. The expected total signal-to-noise ratio when considering only statistical fluctuations in the angular power spectrum due to cosmic, 1/ f , and white
noise variances as defined by Eqn. 32 and Eqn. 34. The top row is for a = 1, and from left to right increasing slew speeds of vt = 0.5, vt = 1 and vt = 2 deg s�1.
The bottom row is same again but with 1/ f noise with a = 2. The contours show the importance of 1/ f noise correlations are when considering the statistical
impact of 1/ f noise on signal-to-noise.

Figure 10. Uncertainty in angular power spectrum averaged over all sim-
ulated frequencies for 1/ f noise with telescope slew speeds of 0.5, 1 and
2 deg s�1 and spectral indices of a = 1 and 2. All curves are for a knee fre-
quency of 1 Hz and the black-dashed line shows the expected white noise
level. There are two principal divisions of the results shown in this figure.
The first division is between the solid and dot-dashed lines representing
1/ f noise with a = 1 and a = 2 respectively. The difference in uncertainty
within these two divisions is due to the three different scan speeds used,
with 2 deg s�1 having the lowest uncertainty in both groups. The key point
to take is that the spectral index of the 1/ f noise is more important than
telescope scan speed.

4.4 Power Spectra Bias

As well as the noise uncertainty it is also important to quantify
the magnitude of the systematics that are introduced by the 1/ f
noise. There are two methods for characterising the bias (not to
be confused with cosmological bias), the first is the residual of the
angular power spectrum between the input and recovered HI signals

defined as

e` =
⌦
Ĉ`

↵
�
⌦
Ĉ`( fk = 0Hz)

↵

C`
, (36)

where
⌦
Ĉ`

↵
is average over the recovered HI realisations, and⌦

Ĉ`( fk = 0Hz)
↵

is the average recovered HI power spectrum as-
suming white noise only. Here realisations of the white noise are
used, instead of the analytically derived white noise level, to ac-
count for any bias originating from the component separation step.

In Fig. 12 e` is presented as a function of frequency and ` for
the baseline model and a range of fk and b values. The interpre-
tation of the bias in the power spectra is that anything greater than
unity implies that the HI power spectrum is dominated by the resid-
ual 1/ f noise. The bias is only seen to be significant when the 1/ f
noise power exceeds the HI angular power (i.e. when fk � 1 Hz),
however some small scale contributions to the noise can be seen
when fk = 0.1 Hz. Encouragingly, when the 1/ f noise is highly
correlated (b = 0.25), the bias is close to zero until the 1/ f noise
greatly exceeds the HI noise power (e.g., fk > 10 Hz). Also note
that, similarly to Fig. 11, the ripples that can be seen in the b= 0.25
column are due to poor foreground subtraction. In this case how-
ever these ripples are more interesting as, from Eqn. 36, any intrin-
sic bias due to residual Galactic foregrounds after the component
separation step should be subtracted. Therefore these ripples must
be due to residual 1/ f noise.

One possible question to ask is whether it would be possi-
ble to model this 1/ f noise bias and remove it. For these simula-
tions that would be trivial as the input 1/ f noise is known, however
in real data that may exhibit 1/ f noise that is non-Gaussian, non-
stationary and coupled with other systematics, accurate modelling
may prove challenging. However, should the bias in the real data
prove to be a significant difficulty one alternative possibility is to
produce cross-correlation HI power spectra from subsets of dishes
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Figure 15. Increase in observing time due to 1/ f noise calculated using
the empirical 1/ f noise model of Eqn. 39 assuming b = 1 (solid lines) and
b = 0.5 (dashed lines). The T0 observing time assumes the same input pa-
rameters as the main simulations to calculate the white noise level.

sideration of the 1/ f noise spectral index (and b) should be factored
in when designing the instrumentation for a HI IM experiment.
However, this may be challenging for multi-purpose instruments
such as the SKA as competing factors may take precedence.

5.2 Impact of Specific Data Analysis Methods and
Systematics

An interesting question to ask is could the impact of the 1/ f noise
presented in this work be reduced in a real HI IM survey? The an-
swer is almost certainly yes, the most obvious improvement would
be to use a more sophisticated component separation technique in
place of PCA. For example the GNILC (Olivari et al. 2016) method
can perform spatially localised component separation for individ-
ual needlet scales, which could suppress the large-scale 1/ f noise
bias discussed in Section 4.

Another improvement would be to use a more advanced map-
making method, such as Destriping (e.g., Sutton et al. 2010) or op-
timal map-making (e.g., Natoli et al. 2001). However, such map-
making methods at present are not optimised for HI IM data as
they do not consider the spectral covariance of the noise or the sky
signal. Without modifying existing map-making codes to consider
spectral correlations there is the possibility that the map-making
procedure itself could induce spectral variations in to the 1/ f noise
spectrum that is effectively similar to increasing b.

Further improvements could also be achieved by using a more
carefully considered observing strategy. For example, this analy-
sis does not utilise of any of instrument specific advantages of
the SKA. The observing strategy presented in this work assumes
that all telescopes are all continuously slewing at the same con-
stant elevation of 55 deg. However, each dish or subsets of dishes
could be given individual scanning strategies that are designed to
maximise cross-linking of scanning tracks, or equalise integration
times across the sky. Similarly, no attempt is made to use cross-
correlation information between dishes or take advantage of any
potential interferometric observations that are taken in parallel.

1/ f noise can also be suppressed during the calibration pro-
cess. This can be achieved by injecting a signal from a calibration
diode into the receiver timestream at regular intervals. The use of a
diode for calibration purposes can present its own challenges. For
example, accurate calibration using a diode requires that over the

interval between two diode injections the stability of the diode must
be significantly better than the receiver system being calibrated.
However, to calibrate the 1/ f noise on shorter time scales would
require a brighter diode signal, which can rapidly become imprac-
tical. As an example, a simple estimate of the required calibration
diode stability implies that calibrating an SKA receiver with a chan-
nel width of 50 MHz on relatively long time scales of 100 seconds
will require the diode stabilities of DTcal

Tcal
⇡ 10�4 and a diode bright-

ness as 25 K. Roychowdhury (prep) intends to explore this problem
in greater detail.

Unfortunately, for the real observations suppression of 1/ f
noise will be far more challenging due to the presence of other sys-
tematics in the data. Some of these systematics will be intrinsic to
the 1/ f noise such as different functional forms for the PSD of the
frequency correlations, the non-Gaussianity in the distribution of
the 1/ f noise amplitudes, and non-stationary properties for a or
fk. Other systematics will be intrinsic to the instrument or the ob-
servations such as the combined interaction of thousands of stand-
ing waves unique to each line-of-sight and each telescope, which in
large numbers may exhibit 1/ f noise-like properties in frequency
and time. Also, how the data is processed, calibrated and binned
into maps from which HI power spectra are extracted are all im-
portant, as each step can unintentionally introduce additional fre-
quency structure into the 1/ f noise spectrum. In the context of this
work, such effects could be seen as increase the effective b value of
the 1/ f noise, and as such will make it more challenging for com-
ponent separation methods to recover the underlying HI intensity
field.

A final point to consider is the impact of the 1/ f noise and
other systematics on the recovery of the frequency space correla-
tions in the HI signal. Though not the focus of this paper, it should
be pointed out that such correlations in the HI intensity field, such
as redshift space distortions, will be lost when using the data pro-
cessing method outlined in this work. Therefore it may be neces-
sary to have separate analysis pipelines, or perhaps different obser-
vations altogether, for spatial and radial science objectives.

5.3 Intuitions for 1/ f Noise in HI IM Surveys

As the results and discussions in this work have shown, there is no
simple way of determining the exact impact of 1/ f noise on any
given future HI IM survey. However, several important guidelines
can be inferred. First, and most importantly, if 1/ f noise is com-
pletely correlated across the bandpass and is not interacting with
any other systematics then it can be perfectly subtracted from the
data. This ideal scenario is not likely to be the case in real data, but
the existence of this limit is encouraging as it sets an ultimate goal
in terms of receiver frequency stability. Therefore in the instance
that 1/ f noise is not fully correlated across the band the following
guidelines should be considered:

(i) First, and most importantly, attempts to measure the a and
b of SD HI IM receivers should be made in order to inform the
planning of any future survey.

(ii) The frequency correlations as described by b (or any other
functional form) are critical to determine. Instruments with highly
uncorrelated 1/ f noise in frequency will find HI IM significantly
challenging.

(iii) Care should taken to preserve the statistical properties of
the 1/ f noise frequency spectrum to avoid inadvertently increasing
the effective b of the 1/ f noise.

(iv) The spatial power of 1/ f noise integrates down as 1/
p

Tobs
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Figure 14. The sum in quadrature over all the signal-to-noise in each plot of Fig. 13, using Eqn. 34. These figures are similar to those shown in Fig. 9 but
include the mean residual power as an uncertainty contribution. The top row is for a = 1, and from left to right increasing slew speeds of vt = 0.5, vt = 1 and
vt = 2 deg s�1. The bottom row is same again but with 1/ f noise with a = 2.

power spectrum, but the slope of the 1/ f noise angular power spec-
tra shown in Fig. 5 is dependent on a combination of the 1/ f noise
a and the choice of observing strategy. The impact of the scan
speed on the amplitude of the 1/ f noise power spectrum is shown
in Fig. 10 to be also dependent on the 1/ f noise a. The best fit
model that describes the relationship between a, vt and the slope
of the 1/ f noise angular power spectra for the range of parameters
explored in this work was determined to be

log10
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Fl

µK2

◆
= log10

✓
A

µK2

◆
+a [a�1]

+b
p

a log10

✓
vt

degs�1

◆
�
p

ca log10(`),

(39)

where A is the parameter described by Eqn. 38, a is the 1/ f spectral
index, vt is the telescope speed in deg s�1, and a, b and c are fitted
constants. The best fit values for the three parameters are: a = 1.5,
b = �1.5, c = 0.5. This model is accurate to the 10 per cent level
over the parameter space explored in this work for spherical har-
monics of `< 100. The

p
a dependence on the slope of the angular

power spectrum is due to geometric considerations of the TOD as
it is projected on the sphere.

There are several limitations of this empirical 1/ f noise
model. The principle limitation of the Eqn. 39 model is determining
how to account for the 1/ f noise frequency correlations described
by b. How b impacts the amplitude of the 1/ f noise power in the
recovered HI angular power spectrum will depend on many aspects
of the observations such as the observing strategy, how the noise
averages, the choice of component separation, 1/ f noise filtering
on long time-scales and more. Further, b will also have an impact
on the residual 1/ f noise angular power spectrum bias that will add
additional systematic uncertainty not accounted for here. Consider-
ing these provisos it is possible to determine the fractional decrease
in F̀ predicted by these particular simulations by measuring the
mean fractional change in the angular power spectrum bias with b.
Through inspection of the data the following two parameter model

was determined to be a reasonable fit to the fractional change in
bias

F̀ (b)
F̀ (b = 1)

= asin(2pb)+b (40)

where the fitted parameter a = �0.16 for 0 < b < 1. Again, to re-
iterate, care should be taken when using this model in combination
with Eqn. 39 to extrapolate the impact of b on to different HI IM
experimental designs.

The forms of Eqn. 39 and Eqn. 40 are not physically mo-
tivated, are limited largely to the description of the observations
simulated within this work, and give limited insight into the corre-
lations between spectral index and slew speed. Still, one particular
use of Eqn. 39 and Eqn. 40 could be to improve forecasts of fu-
ture SKA HI IM surveys by adding predictions for the 1/ f noise
power spectrum into Fisher matrix analyses such as those presented
in Bull et al. (2015) and Pourtsidou (2016).

One practical example of using the Eqn. 39 is to predict how
much additional observing time may be required for a range of re-
ceiver 1/ f noise parameters. For simplicity only the worst case of
b = 1 is considered. As SNR is proportional to the total observing
time, then the following relationship is true

Tobs = T0
SNRw
SNR

, (41)

where T0 is the observing time to achieve the signal-to-noise ratio
of SNRw given just white noise, Tobs is the observing time required
to achieve SNRw given that SNR was achieved in time T0 due to ad-
ditional 1/ f noise. Fig. 15 shows difference in observing times cal-
culated for 1/ f noise with 1mHz < fk < 10 Hz and 0.5 < a < 2.5.
This analysis assumed the full bandwidth (Dn = 450MHz) of the
instrument, the signal to be at the weighted mean redshift of z̄= 0.2,
and includes a sample variance contribution. The plot shows how
important the spectral index of the 1/ f noise is, as it can easily in-
crease the effective statistical uncertainty in the HI angular power
spectrum by an order-of-magnitude between a= 1 and a= 2. Con-
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Hydrogen	Epoch	of	Reionzation	Array	(HERA) 

● Radio	Telescope	dedicated	to	observing	
large	scale	structures	prior	and	during	the	
epoch	of	reionization.			

● Full	HERA-350	will	be	comprised	of	14	meter	
parabolic	dish	of	320		forming	a	Hexagonal	
core	and	30	outriggers,	observing	at	
50MHz-250MHz,	located	SKA	site,	Karoor,	
South	Africa.	

● Currently,	HERA	consist	of	47	antennas	
observing	at	100MHz-200MHz.	

● On	the	left	is	HERA-19.	[https://
reionization.org/]	

	
	



Quasi-Redundant	Calibration	of	HERA-47	:		Internal	Data	
Release	1	(IDR1;	JD	2458042)	

	
	
Measurement	Equation 

We	 calibrate	 HERA-47	 using	 redundant	 	 baseline		
scheme,	which	assume	 that	 identical	baseline	 see	
same	sky	signal								.	 
	 
Unfortunately,	 in	 real	 life,	 variations	 due	 antenna	
primary	beams	and	antenna	location	misplacement,	
the	 perfect	 redundant	 configuration	 breaks.	 This		
can	be	resolved	by	computation	of	the	expected	sky	
covariance	between	baselines	with	a	redundant	set.	
This	 allows	 the	 inclusion	 of	 the	 instrument	 model	
and	 bright	 sources	 with	 known	 positions.	 This	
calibration	scheme	is	called	correlation	calibration		



Machine	learning	aspects	
•  Characterize	the	21-cm	tomography	field	(theory)	
•  Calibrate	the	interferometer	(technology)	





People	in	UKZN	groups	
•  Cheng	Cheng	(Joint	postdoc	at	Tsinghua	U/Beijing):	Machine	

learning	in	21-cm	tomography	
•  Devin	Crichton	(postdoc):	HIRAX,	instrumentation		
•  We-Ming	Dai	(postdoc):	single-dish	intensity	mapping,	

interferometry,	reconstruction	of	reionisation	history	
•  Matt	Hilton	(faculty):	galaxy	clusters,	LSST	
•  Yi-Chao	Li	(former	postdoc,	now	UWC):	experimental	

characterization	of	MeerKAT	
•  Yin-Zhe	Ma	(faculty):	21-cm	cosmology,	theory	and	

observations	
•  Kavilan	Moodley	(faculty):	21-cm	cosmology,	weak	lensing	
•  Mthokozisi	Mdlalose:	Quasi-redundant	baseline	calibration	
•  Denis	Tramonte	(postdoc):	HI	stacking	from	Parkes	and	GBT	
•  Anthony	Walters	(postdoc):	Fast	radio	Burst	
•  Elimboto	Yohana	(PhD	Stu.):	single-dish	intensity	mapping	

pipeline,	FAST	
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Bio-photonics and medicine: body parameters monitoring; biosensors; photonics 
tools and methods for bio systems study; photonics for diagnosis and treatment; 
photonics for drug delivery. 

 
Energy: photovoltaics: materials, devices, methods; wireless energy transfer. 

 
Lasers: material processing; navigation; metrology and measurement; remote 
atmosphere monitoring. 

 
Sensors: detectors for extremely low level of contamination values; optical sensors for 
monitoring parameters of complex systems and structures. 

 
Computer simulation in photonics: computer algorithms for evaluation of  optical 
properties of high contrast composite materials; time efficient algorithms for simulation 
and optimization of optical properties for  periodic/quasi-periodic 3D structured 
materials; computer simulation of complex photonics devices; computer simulation of 
high performance information systems. 
 
Please note that the thematic areas and type of supported research vary depending on 
particular participating funding organization. More details can be found in respecting 
National Annex document (available on www.brics.rfb.ru) or from national contact 
points. However, the general information on thematic areas supported by each of the 
participating funding organization is presented below: 
 

  Thematic areas 
Brazil Russia India China 

South 
Africa 

CNPq FASIE MON RFBR DST MOST NSFC NRF 

a 
Prevention and monitoring of 
natural disasters 

V V V V V V   V 

b 
Water resources and pollution 
treatment  

V  V V V V   V V 

c 
Geospatial technology and its 
applications 

V  V V V V V   V 

d 
New and renewable energy, 
and energy efficiency  

V  V V V V V   V 

e Astronomy 
  V V V V   V V 
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2016	BRICS	Pilot	call:	



BRICS	submitted	proposal:	(3—5	years	project)		
21-cm	cosmology	and	large-scale	structure	of	the	Universe	
	
Combination:	4,5,6,15	of	the	proposed	project		

Name Organization, Division Title Degree Speciality 

Yin-Zhe Ma 
Astronomy and Cosmology 
Research Unit, University of 
KwaZulu-Natal 

Dr. PhD 
Cosmology, 
Computational 
Astrophysics 

�  �  �  �  �  

Romeel Dave 
Department of Astronomy, 
University of Western Cape 

Prof. PhD 
Galaxy 
formation, 
Cosmology 

Mario Santos 
Department of Astronomy, 
University of Western Cape Prof. PhD 

Radio 
astronomy, 
cosmology 

Kavilan 
Moodley�  

Astronomy and Cosmology 
Research Unit, University of 
KwaZulu-Natal 

Prof. PhD 

Theoretical 
and 
observatoinal 
cosmology 

Jonathan 
Sievers�  

 

Astronomy and Cosmology 
Research Unit, University of 
KwaZulu-Natal 

Prof. PhD 
Radio 
astronomy, 
cosmology�  

Aroonkumar 
Beesham 

University of Zululand Prof. PhD Theoretical 
Cosmology 

 �   �  �  

	

South	Africa:	



China:	



India:	



Russia:	



Brazil:	(newly	added)	



Plan	of	work:	

•  Building	new	models	of	Epoch	of	Reionization,	
and	investigating	evolution	of	HI	over	cosmic	
time		

•  Cross-correlation	of	21-cm	with	other	cosmic	
fields		

•  Subtraction	of	foreground	for	21-cm	signal.		
•  Calibration	of	telescope	systematics		



M.-A. Bigot-Sazy - BINGO collaboration

Site selection

Quary Castrillon in Northern Uruguay 

stable walls in order to accommodate the telescope

correct orientation 
Quarry Castrillon

Montevideo

Buenos Aires

Current Design Plan

• Order 103 close-packed 5-6m dishes.!

• Operate between 400-800 MHz!

• Channelizing on FPGA ICE boards (Matt Dobbs)!

• Correlation on GPUs.!

• Dishes tilt N/S:  when “deep enough” on a strip, tilt over to increase fsky.!

• Would like to do some beamforming in correlator, kick out small subset of 
beams to external processing.!

• eThekwini municipality very supportive, providing site in Durban, seed 
funding for prototype.  Starting to order parts now!

Last day of summer operations
May 4, 2017



IRG - BRICS Multilateral Joint Call
FEEDBACK TO APPLICANT

Dr Y MaApplicant

NRF Reference BRIC160710176846
21-cm cosmology and large-scale structureShort Title

Thank you for the time and effort you took to participate in the BRICS Multilateral Joint Science and Technology 
Research call.

Funding applications for this instrument were extremely competitive with many high quality proposals. The 
adjudication process was intense and only proposals that achieved a high ranking according to the designated 
assessment scorecard were supported. Due to the high number of applications, competitiveness of the programme, 
alignment with BRICS objectives and budgetary constraints, not all deserving applications were selected for funding. 

Review panel comments:
• This is an excellent and innovative project with significant potential for exploitation or commercialisation. 

• There is a clear plan for student exchange and their names have been provided. However, there is no other 
source of funding.

Based on the above remarks, the local panel recommended that this proposal be funded. However, the proposal was 
not recommended for funding by the Joint Technical Committee (JTC). A very limited number of applications were 
recommended. The JTC makes a final decision on proposals to be funded.

Not recommended. 

Institution University of KwaZulu-Natal

Feedback and Recommendations

Date : 06 September 2017

Results:	2016	pilot	call	



2 
 

x Prevention and monitoring of natural disasters 
x Water resources and pollution treatment. 

 
Please see the attached “BRICS STI Framework Programme” for a full description on each thematic 
area mentioned above.  
 
Duration of projects 
 
The projects will be supported for a period of three years (projects starting January 2017 and ending December 
2019).  
 
Who may apply? 
 
This call is open to working researchers residing in South Africa and affiliated with a recognised higher 
education or research institution such as a university, university of technology or science council. The South 
African applicant must be in possession of a PhD. 
 
A multi-institutional/ consortia approach will be preferred. Therefore, applicants are allowed to collaborate with 
other partners such as NGOs or companies. However, the NGO and industry participants are expected to meet 
their participation costs in the joint project. 
 
Please note:  

x Cooperation projects with the potential to be sustained beyond the funding period will be favourably 
considered.  

x Only joint proposals that involve at least three or more partners from the BRICS countries will be 
considered for funding.  

x Joint projects that involve young scientists (through exchange programmes or short placements) and pay 
attention to a balanced involvement of female and black researchers will be positively considered and 
will receive a higher rating.  

x In terms of South Africa’s transformation agenda applications from previously disadvantaged individuals 
and the involvement of historically disadvantaged higher education and research institutions will be 
prioritised.  

 
How do I apply? 
 
Applications must be submitted to the BRICS Call Secretariat and to each of the respective funding 
organisations in BRICS countries according to national regulations. Therefore, the same proposal to be received 
in South Africa should have been received by the BRICS Call Secretariat and the other BRICS partner countries 
(through their national rules). 
 

(i) BRICS Call Secretariat:  
x Applicants are expected to download the Joint Application Form (JAF) available at http://brics.rfbr.ru/ 

and submit to BRICS Call Secretariat. 
x A JAF must be submitted to the BRICS Call Secretariat via http://brics.rfbr.ru/ 
x A proposal not received by the BRICS Call Secretariat and by each of the respective funding 

organisations by the due date will not be considered for funding. 
 

(ii) South African applicants should further submit their applications by following the steps below:  
x The South African PI must submit a full joint proposal electronically to the NRF through the NRF Online 

Submission System at  https://nrfsubmission.nrf.ac.za/ 
x Register/Login using your ID number and password. 
x Go to “My Applications” and select “Create Application”. 
x Select the call for which you are applying for: BRICS 2016 Multilateral Joint S&T Research 

Collaboration. 
x Complete all compulsory and the CV sections in full. Please attach the required documents in PDF 

format in the following order: CVs of partners, budgets of partners, signed support letters of the partners, 
proof of application to Call Secretariat. 

x Remember to submit your application on completion. 
x Complete applications will go to the host institutions for verification before being forwarded to the NRF 

for further processing. 
x Incomplete applications will not be considered. 

But	each	country	evaluates	its	own	proposal.	The	problem	can	arise	from	here.	

																							Country	A																				Country	B																		Country	C																					Country	D	
	
Project	1															1																																			1																																	4																																			N/A	
	
Project	2																3																																		3																																		2																																		N/A	
	
Project	3																4																																		4																																		1																																		N/A																														
	
Project	4																2																																		2																																			2																														Evaluated	

Please	could	you	tell	me	which	project	should	be	funded?	



Since	the	project	is	a	joint	project,	it	
should	be	required	to	submit	one	
joint	proposal	with	all	partner	

countries’	contribution,	and	being	
evaluation	at	one	unique,	joint	

committee.		


