Using theory, simulations and observations for predictions and tests that tackle outstanding questions in star-formation

> By Prof Huabai Li of CUHK, Prof Lerothodi Leeuw of UNISA and other BRICS collaborators)

Advanced MHD Simulations and High-resolution Observations for Tackling the Magnetic-Braking Catastrophe in Star-formation

> By Prof Huabai Li of CUHK, Prof Lerothodi Leeuw of UNISA and other BRICS collaborators)

- Funding in most partner countries is being directed towards CTA, leading to shortage of funds for H.E.S.S.
- If H.E.S.S. operations continue beyond 2019, Namibia and South Africa will have to take a leading role.
- · Namibia (NCRST) is willing to take over the site contract.
- There is great interest in the current H.E.S.S. collaboration to keep H.E.S.S. operating but insufficient funding.

Astroparticle Physics Forum BRICS

by Astroparticle Physics Forum South Africa, and BRICS Partners

- A history of star formation theory
- Some goals: to explain star formation efficiency, IMF, disk and jets.

Star Formation Theory

• Star formation efficiency

Low star-formation efficiency

Some properties of MCs:

M ~ 10⁵ solar mass T ~ 10 K L ~ 10 pc

free-fall time ~ 10^6 yr

age >> 10⁶ yr M_{star}/M_{cloud} (SF efficiency) = only a few %

optical image

dust thermal emission (sub-mm)

Disks and jets

IRAS 04302+2247

HH 30

3/22

Protostellar Discs & Jets

• Gravity vs turbulence vs B-field

"When the opponent is hard, I retreat. When the opponent reaches the end of tether, I follow" — Taichi master Wang, Zhongyue (13th century)

> turbulent pressure against gravitational contraction

Gravity

turbulence driven by gravitational energy

Turbulence

star formation

super-cribical wass compresses B-fields

gravitational contraction channeled by B-fields

turbulence shock compresses B-fields

anisotropic turbulence channeled by B-fields

Magnetic fields

- Simulation: supersonic turbulence prevent the global collapse of a cloud, but enhance density locally (lognormal density PDF) to result in small-scale contraction
- Observation: lognormal density PDF observed for Av < 2-5 mag; above which the PDF follows power laws (signature of contraction)

Turbulence VS. Gravity

log-normal density PDF

sub-Alfvenic and super-Alfvenic turbulence simulations result in ordered and tangled B-field morphologies, respectively.

Turbulence VS. Magnetic field

Otto, Ji & Li ApJ 2017

Federrath+ ApJ 2011

• Observation of M33 GMC B-fields favoured sub-Alfvenic turbulence

Turbulence VS. Magnetic field

FIRST MULTISCALE STUDY of CLOUD MAGNETIC FIELDS from 10² to 10⁻² pc

NGC 6334

Turbulence VS. Magnetic field

 Sub-alfvenic simulations with gravity result in bimodal (// or ⊥) field-cloud alignment

Gravity VS. Magnetic field

ordered B-field + sub-Alfvenic turbulence

• Bimodal field-cloud alignment observed

Gravity VS. Magnetic field

bimodal cloud-field alignment

18/22

 Simulations and observations agree on that // alignment results in more concentrated, headheavy filaments and ⊥ alignment results in filaments with more even mass distribution.

Gravity VS. Magnetic field

bimodal cloud-field alignment

Guo, Wang & Li, submitted

19/22

 // alignment systematically shows higher star formation efficiency.

nature du la company de la com

bimodal SF efficiency

Galactic Longitude (*)

Star formation in barren and fecund clouds

SFR/mass (normalized to the mean)

Li+ Nature Ast. 2017

20/22

The strong B-field scenario is considered to cause the "magnetic breaking catastrophe", i.e. if kinetic energy cannot tangle B-field at larger scale (from 100 to 0.01 pc, as we have shown), how can it be possible to form disks, which need to tangle B-fields < 0.001 pc scale! reminder: the smaller the scale the lower the kinetic (turbulent) energy

Problem: Disc formation — Magnetic braking catastrophe

our proposed solution: turbulence induced ambipolar diffusion i.e., smaller eddies won't be coupled with B-fields and thus won't feel the "braking".

The decoupling of neutral turbulence and B-field is indeed observed recently (Tang, Li & Lee, ApJ, 2018), starting from < 0.5 pc!

Problem: Disc formation — Magnetic braking catastrophe

So far, we **assumes flux-freezing** !! Most of the cloud MHD simulations **assume flux-freezing** !!

dominant in molecular clouds

With typical cloud **turbulence**, B, density and ionisation fraction,

Rm = 1 at scale ~ 0.5 pc! Below which, flux freezing fails — **turbulent** ambipolar diffusion

The observation seems to make sense: if we use the "effective magnetic diffusivity", instead of "ohmic diffusivity", the diffusion term in the induction equation is too large to be ignore.

However, in the state-of-the-art MHD simulations, the diffusion term is ignored and perfect flux freezing is assumed. If the decoupling happens from 0.5 pc as we observed, <u>these</u> <u>simulations need major improvement! And involving this diffusion</u> <u>term will tremendously increase the CPU time required to perform the</u> <u>simulation</u>

This is one major reason for our Brics star-formation proposal. From the observation side, the "0.5 pc" is only from one cloud, we need more tests.

- Funding in most partner countries is being directed towards CTA, leading to shortage of funds for H.E.S.S.
- If H.E.S.S. operations continue beyond 2019, Namibia and South Africa will have to take a leading role.
- · Namibia (NCRST) is willing to take over the site contract.
- There is great interest in the current H.E.S.S. collaboration to keep H.E.S.S. operating but insufficient funding.

Astroparticle Physics Forum BRICS

by Astroparticle Physics Forum South Africa, and BRICS Partners Using theory, simulations and observations for predictions and tests that tackle outstanding questions in star-formation

> By Prof Huabai Li of CUHK, Prof Lerothodi Leeuw of UNISA and other BRICS collaborators)